Decimating Samples for Mesh Simplification
Surface Reconstruction A sample and PL approximation
Sample Decimation Original 40K points = 0.33 12K points = 0.4
Local feature size and sampling Medial axis Local feature size f(p) -sampling d(p)/f(p)
Voronoi structures
Cocones Space spanned by vectors making angle /8 with horizontal Compute cocones Filter triangles whose duals intersect cocones Extract manifold
Cocones, radius and height cocones:C(p,,v) space by vectors making /2 - with a vector v. radius r(p): radius of cocone height h(p): min distance to the poles
Decimate
Cocone Lemma
Guarantees
Foot 0.4 2046 points Original 20021 points 0.33 2714 points
Foot 0.4 2046 points 0.33 2714 points 0.25 4116 points
Bunny 0.4 7K points 0.33 11K points Original 35K points
Bunny 0.4 7K points 0.33 11K points Original 35K points
Experimental Data
Conclusions Introduced a measure radius/height ratio for skininess of Voronoi cells We have used the radius/height ratio for sample decimation Used it for boundary detection (SOCG01) What about decimating supersize data (PVG01) Can we use it to eliminate noise? www.cis.ohio-state.edu/~tamaldey 543,652 points 143 -> 28 min 3.5 million points Unfin-> 198 min