Nathan Seifert, Wolfgang Jäger University of Alberta

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
CHIRPED-PULSE TERAHERTZ SPECTROSCOPY FOR BROADBAND TRACE GAS SENSING
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Sebastian Böser Acoustic sensor and transmitter development Amanda/IceCube Collaboration Meeting Berkeley March 2005.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU 06/19/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
High Resolution Microwave Spectra of He N – and (H 2 ) N – Linear Molecule Clusters Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
FDTD Modeling of FID Signal in Chirped-Pulse Millimeter Wave Spectroscopy Alexander Heifetz1, Sasan Bakhtiari1, Hual-Teh Chien1, Stephen Gray1, Kirill.
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
The microwave spectrum of lactaldehyde, the simplest chiral sugar.
Characterization of Intermolecular Interactions in the
Two-Photon Absorption Spectroscopy of Rubidium
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
RH12, 70th International Symposium on Molecular Spectroscopy
The rotational spectrum of the urea isocyanic acid complex
10.5 Fourier Transform NMR Instrumentation
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
Buffer Gas Cooled Molecule Source for CPmmW Spectroscopy
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Nathan Seifert, Wolfgang Jäger University of Alberta A New 2.0-6.0 GHz Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer: Instrumental Analysis & Initial Molecular Results Nathan Seifert, Wolfgang Jäger University of Alberta

(Nearly) 10 Years of Broadband Rotational Spectroscopy 2008: First instrument paper published in Rev Sci Instrum Many groups around the world with chirped pulse instrumentation! Now: Molecular structure UAlberta, Umanitoba (RF08), U Virginia (WG07) Max Planck CFEL (next talk!), E Illinois Univ. (RH04), Amherst College (RA02), Wesleyan University (TC02), Universidad de Valladolid (WC05), Universidad de Pais Vasco (TH04), and more!!! Reaction Kinetics MIT, Missouri (MI02), Argonne Nat. Lab. (WH02) Astrochemically-Relevant Molecular Species Harvard (RA03), UC Davis (WE11), Koln (TH08) Analytical Chemistry (e.g. Head space analysis) Brightspec, LLC (WE09, WG10) G. B. Park, R. W. Field, J. Chem. Phys. 2016, 144, 200901.

CP-FTMW Spectroscopy at UofA Current CP-FTMW Spectrometer: Example Measurement 12.0 GHz CW 11.0 – 11.9 GHz 12.1 – 13.0 GHz Arbitrary waveform generator 100 MHz – 1 GHz 1-4 µs chirped pulse 25 W solid state amplifier Low noise high gain amplifier 500 MHz – 2.5 GHz Molecular signal, 11-13 GHz 13.5 GHz CW Doppler limited; T2 ca. 5 µs Free induction decay High speed digitizer Fourier transform

CP-FTMW Spectroscopy at UofA Current CP-FTMW Spectrometer: Primary Bottlenecks Low power 25 W amplifier limits sensitivity; generally scales as P1/2 up to > 500 W Arbitrary waveform generator Limited bandwidth: Requires frequency synthesizer as local oscillator to cover entire band Spectral impurities Mixing artifacts derived from synthesizer’s spurious signals intense enough to require background subtraction Low noise high gain amplifier Molecular signal, 11-13 GHz High speed digitizer Slow data processing: Collecting FIDs a slow process -- practically limits repetition rate to ca. 1 Hz Room for improvement everywhere!

phase-locked oscillator 2.0-6.0 GHz CP-FTMW design Improved power: Approximately 2x power relative to previous generation CP-FTMW instrument Low-compression switch: High power-handling SPDT switch (RF Lambda) used to reduce CW noise power and limit compression of pulse Improved bandwidth: Only doubler required to reach required band; can output up to 4.8 GHz for direct measurements Arbitrary waveform generator 1-3 GHz 1-8 µs chirped pulse +15 dBm +46 dBm 2-6 GHz x2 -15 dBm Improved gain: Higher directionality/ gain antennae and improved low noise amplifier improve molecular signal detection Low noise amplifier 0.1-4.1 GHz High speed digitizer Cleaner heterodyning: PLO has order of magnitude improvements in spectral purity relative to synthesizers Higher speed digitization: Significant improvements over Previous gen digitizer at UofA. At 20 µs detection length, 25Gs/s 6 frames per valve pulse --- effective maximum rate is 10Hz. 6.1 GHz phase-locked oscillator

Initial Results: ortho-dichlorobenzene FWHM: 75 kHz 202 - 101 212 - 111 35Cl / 37Cl 35Cl / 37Cl Amplitude (mV) Expt., 7k average (10 min) Value / MHz Onda & Yamaguchi[1] New A 1930.02(13) 1930.26(34) B 1431.16(7) 1432.73(24) C 821.670(4) 821.15(79) 1.5χaa -56.9(20) -61.90(88) 0.25(χbb -χcc ) -6.0(13) -6.11(20) χab -- -55.3(51) / 48.3(47) RMS 0.134 0.009 Revised prediction (new constants) Frequency (MHz) [1] M. Onda, I. Yamaguchi, J. Mol. Struct. 1976, 34, 1-7.

Methyl Lactate Comparison 2-6 GHz CP-FTMW Amplitude (mV) Frequency (MHz) 8-18 GHz CP-FTMW, after fixes 101-000 S/N: ~8000:1 @ 730k avg 303-202 Power (arb units) S/N ( 𝑃 1/2 ): 170:1 @ 2000 avg Frequency (MHz) 170:1 @ 2000 average  4:1 @ 1 acqusition 8000:1 @ 730k average  11.3:1 @ 1 acqusition Or, at 0.5 Hz (3 acq/s)  7:1 @ 1 second Or, at 2 Hz (12 acq/s)  39:1 @ 1 second At face value, the new chirp is winning by a bit, BUT…. Intrinsic intensity (log10 scale) @ Trot = 2 K: 101-000 : -3.55 303-202 : -2.27 Therefore, the 303 is intrinsically 19 times more intense At equivalent performance to the new chirp, the 303 – 202 should be 740:1 @ 1 second.

Deep Averaging: (2-fluoroethanol)4 0.1% 2-fluoroethanol, 3 atm He Experiment B3LYP-D3/6-311++g(d,p) A / MHz 561.19622(96) 558.7 B 289.3763(17) 303.0 C 250.0267(20) 262.8 DJ / kHz 0.070(3) DJK -0.035(2) N / σ / kHz 18 / 7.3 3.0-4.5 GHz, 1.34 million averages 918-826 615-505 624-514 New tetramer detection! Intensity (µV) Frequency (MHz)

Future Goals & Plans First significant study completed thanks to new instrument: (trifluoroethanol)3 (see RG06!) Traveling wave tube amplification coming soon 2-8 GHz, ~400 W Heated sample reservoir & gas nozzle Promising initial results with a number of test molecules Laser Ablation (D)- (left) / (L)- (right) tartaric acid, addition and insertion based monohydrates Only possible with laser ablation! (mp. 172 °C) One step ahead of us! Alonso group from Valladolid reports on monomer tomorrow (WC05) LABVIEW-free spectrometer control software VISA-compliant suite written in full Python MW-MW Double Resonance & other multiresonant pulse sequences Easy to program with current-generation AWGs

Thank you! Acknowledgements Yunjie Xu, Javix Thomas Mohamad al-Jabiri Elijah Schnitzler, David Loewen Chemistry Dept. Machine Shop Thank you!