INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723

Slides:



Advertisements
Similar presentations
1 Introduction to Network Layer Lesson 09 NETS2150/2850 School of Information Technologies.
Advertisements

4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 13.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Network Layer: Host-to-Host Communication. 2 Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using.
Network Layer4-1 Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Announcement #1 r Did you all receive homework #1 and #2? r Homework #3 will be available online during the day r Midterm.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 15.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright
Network Layer4-1 Chapter 4 Network Layer Part 1: network layer overview datagram networks routers Computer Networking: A Top Down Approach 6 th edition.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
Introduction to Network Layer. Network Layer: Motivation Can we built a global network such as Internet by extending LAN segments using bridges? –No!
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network Layer4-1 Summary: TCP Congestion Control When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 18 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
Virtual Circuit Network. Network Layer 2 Network layer r transport segment from sending to receiving host r network layer protocols in every host, router.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Lecture 6 Overview. TCP: Transmission Control Protocol TCP is an alternative transport layer protocol supported by TCP/IP. TCP provides: – Connection-oriented.
Introduction 1-1 EKT355/4 ADVANCED COMPUTER NETWORK MISS HASNAH AHMAD School of Computer & Communication Engineering.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
1 John Magee 24 February 2014 CS 280: Network Layer: Virtual Circuits / Datagram Networks and What’s inside a Router? Most slides adapted from Kurose and.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
EEC-484/584 Computer Networks Lecture 9 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
4: Network Layer4-1 Schedule Today: r Finish Ch3 r Collect 1 st Project r See projects run r Start Ch4 Soon: r HW5 due Monday r Last chance for Qs r First.
1 Network Layer Lecture 13 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Forwarding.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Project 2 r DUE Wed: 02/24 Network Layer4-1. Project 2 r DUE Wed: 02/24 r DUE Mon: 02/29 Network Layer4-2.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 18 INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Network Layer4-1 Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol – Datagram.
Data Communication and Networks
Chapter 3 Part 3 Switching and Bridging
Some slides have been taken from:
Chapter 4 Network Layer All material copyright
Chapter 4: Network Layer
Scaling the Network: The Internet Protocol
Network Layer Goals: Overview:
CS4470 Computer Networking Protocols
EEC-484/584 Computer Networks
Chapter 3 Part 3 Switching and Bridging
Chapter 4-1 Network layer
Network layer functions
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
Network Layer I have learned from life no matter how far you go
October 26th, 2010 CS1652/Telcom2310 Jack Lange
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
EEC-484/584 Computer Networks
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
CS 5565 Network Architecture and Protocols
Scaling the Network: The Internet Protocol
Chapter 4: Network Layer
Presentation transcript:

INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela Perera Department of Computer Science and Information Systems Meshel Hall 320 (330) 941 1341 gpererao@cis.ysu.edu

Chapter 4: Network Layer Chapter goals: understand principles behind network layer services: forwarding versus routing routing (path selection) network layer service models how a router works advanced topics: IPv6, mobility instantiation, implementation in the Internet

Chapter 4: Network Layer Introduction Routing algorithms Link state Distance Vector Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Routing in the Internet RIP OSPF BGP

Network layer transport pkt from sending to receiving host on sending side encapsulates pkts into datagrams on rcving side, delivers segments to transport layer network layer protocols in every host, router router examines header fields in all IP datagrams passing through it application transport network data link physical network data link physical application transport network data link physical

Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route taken by packets from source to dest. routing algorithms analogy: routing: process of planning trip from source to dest forwarding: process of getting through single interchange

Interplay between routing and forwarding 1 2 3 0111 value in arriving packet’s header routing algorithm local forwarding table header value output link 0100 0101 1001

Network service model Q: What service model for “channel” transporting datagrams from sender to receiver? Example services for individual datagrams: guaranteed delivery guaranteed delivery with less than 40 msec delay Example services for a flow of datagrams: in-order datagram delivery guaranteed minimum bandwidth to flow restrictions on changes in inter-packet spacing

Network layer service models: Guarantees ? Network Architecture Internet ATM Service Model best effort CBR VBR ABR UBR Congestion feedback no (inferred via loss) no congestion yes Bandwidth none constant rate guaranteed minimum Loss no yes Order no yes Timing no yes

Chapter 4: Network Layer Introduction Routing algorithms Link state Distance Vector Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Routing in the Internet RIP OSPF BGP

Chapter 4: Network Layer Introduction Routing algorithms Link state Distance Vector Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Routing in the Internet RIP OSPF BGP

Network layer connection and connection-less service datagram network provides network-layer connectionless service VC network provides network-layer connection service analogous to the transport-layer services, but: service: host-to-host no choice: network provides one or the other implementation: in network core

Virtual circuits “source-to-dest path behaves much like telephone circuit” performance-wise network actions along source-to-dest path call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host address) every router on source-dest path maintains “state” for each passing connection link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC implementation a VC consists of: path from source to destination VC numbers, one number for each link along path entries in forwarding tables in routers along path packet belonging to VC carries VC number (rather than dest address) VC number can be changed on each link. New VC number comes from forwarding table

Forwarding table VC number Forwarding table in interface 12 22 32 1 2 3 VC number interface number Forwarding table in northwest router: Incoming interface Incoming VC # Outgoing interface Outgoing VC # 1 12 3 22 2 63 1 18 3 7 2 17 1 97 3 87 … … … … Routers maintain connection state information!

Virtual circuits: signaling protocols used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today’s Internet application transport network data link physical application transport network data link physical 5. Data flow begins 6. Receive data 4. Call connected 3. Accept call 1. Initiate call 2. incoming call

Datagram networks no call setup at network layer routers: no state about end-to-end connections no network-level concept of “connection” packets forwarded using destination host address Pkts between same source-dest pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data

Datagram or VC network: why? Internet (datagram) data exchange among computers “elastic” service, no strict timing req. “smart” end systems (computers) can adapt, perform control, error recovery simple inside network, complexity at “edge” many link types different characteristics uniform service difficult ATM (VC) evolved from telephony human conversation: strict timing, reliability requirements need for guaranteed service “dumb” end systems telephones complexity inside network

Chapter 4: summary Introduction Routing algorithms Link state Distance Vector Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Routing in the Internet RIP OSPF BGP