Correlation and Linear Regression

Slides:



Advertisements
Similar presentations
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Linear Regression and Correlation Chapter 13.
Advertisements

Correlation and Linear Regression
Lesson 10: Linear Regression and Correlation
Chapter 12 Simple Linear Regression
Forecasting Using the Simple Linear Regression Model and Correlation
13- 1 Chapter Thirteen McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter Thirteen McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. Linear Regression and Correlation.
Chapter 12 Simple Linear Regression
Correlation and Regression Analysis
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Linear Regression and Correlation
SIMPLE LINEAR REGRESSION
SIMPLE LINEAR REGRESSION
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
Correlation and Linear Regression Chapter 13 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Correlation and Linear Regression
Correlation and Linear Regression
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 13 Linear Regression and Correlation.
Correlation and Linear Regression Chapter 13 Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Linear Regression and Correlation
SIMPLE LINEAR REGRESSION
Introduction to Linear Regression and Correlation Analysis
Linear Regression and Correlation
(Regression, Correlation, Time Series) Analysis
Correlation and Linear Regression
1 Chapter 9. Section 9-1 and 9-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Chapter 6 & 7 Linear Regression & Correlation
© The McGraw-Hill Companies, Inc., Chapter 11 Correlation and Regression.
Introduction to Linear Regression
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 13 Linear Regression and Correlation.
Examining Relationships in Quantitative Research
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Chapter 4 Linear Regression 1. Introduction Managerial decisions are often based on the relationship between two or more variables. For example, after.
Chapter 11 Correlation and Simple Linear Regression Statistics for Business (Econ) 1.
Scatter Diagrams scatter plot scatter diagram A scatter plot is a graph that may be used to represent the relationship between two variables. Also referred.
CHAPTER 5 CORRELATION & LINEAR REGRESSION. GOAL : Understand and interpret the terms dependent variable and independent variable. Draw a scatter diagram.
Linear Regression and Correlation Chapter GOALS 1. Understand and interpret the terms dependent and independent variable. 2. Calculate and interpret.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Linear Regression and Correlation Chapter 13.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Linear Regression and Correlation Chapter 13.
Chapter 13 Linear Regression and Correlation. Our Objectives  Draw a scatter diagram.  Understand and interpret the terms dependent and independent.
Correlation and Linear Regression
Linear Regression and Correlation
Correlation and Linear Regression
Regression and Correlation
Correlation & Regression
Chapter 13 Linear Regression and Correlation Basic Statistics
Correlation and Simple Linear Regression
Linear Regression and Correlation Analysis
Chapter 5 STATISTICS (PART 4).
SIMPLE LINEAR REGRESSION MODEL
CHAPTER 10 Correlation and Regression (Objectives)
Correlation and Simple Linear Regression
Correlation and Regression
Correlation and Simple Linear Regression
Correlation and Regression
Correlation and Regression
SIMPLE LINEAR REGRESSION
Simple Linear Regression and Correlation
SIMPLE LINEAR REGRESSION
Chapter Thirteen McGraw-Hill/Irwin
Linear Regression and Correlation
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression
Presentation transcript:

Correlation and Linear Regression Chapter 13 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. 1

Learning Objectives LO1 Define the terms dependent and independent variable. LO2 Calculate, test, and interpret the relationship between two variables using the correlation coefficient. LO3 Apply regression analysis to estimate the linear relationship between two variables LO4 Interpret the regression analysis. LO5 Evaluate the significance of the slope of the regression equation. LO6 Evaluate a regression equation to predict the dependent variable. LO7 Calculate and interpret the coefficient of determination. LO8 Calculate and interpret confidence and prediction intervals. 13-2 2

Regression Analysis - Introduction Recall in chapter 4 we used Applewood Auto Group data to show the relationship between two variables using a scatter diagram. The profit for each vehicle sold and the age of the buyer were plotted on an XY graph The graph showed that as the age of the buyer increased, the profit for each vehicle also increased This idea is explored further here. Numerical measures to express the strength of relationship between two variables are developed. In addition, an equation is used to express the relationship between variables, allowing us to estimate one variable on the basis of another. EXAMPLES Does the amount Healthtex spends per month on training its sales force affect its monthly sales? Is the number of square feet in a home related to the cost to heat the home in January? In a study of fuel efficiency, is there a relationship between miles per gallon and the weight of a car? Does the number of hours that students studied for an exam influence the exam score? 13-3 3

Dependent Versus Independent Variable LO1 Define the terms dependent and independent variable. Dependent Versus Independent Variable The Dependent Variable is the variable being predicted or estimated. The Independent Variable provides the basis for estimation. It is the predictor variable. Which in the questions below are the dependent and independent variables? Does the amount Healthtex spends per month on training its sales force affect its monthly sales? Is the number of square feet in a home related to the cost to heat the home in January? In a study of fuel efficiency, is there a relationship between miles per gallon and the weight of a car? Does the number of hours that students studied for an exam influence the exam score? 13-4 4

Scatter Diagram Example LO1 Scatter Diagram Example The sales manager of Copier Sales of America, which has a large sales force throughout the United States and Canada, wants to determine whether there is a relationship between the number of sales calls made in a month and the number of copiers sold that month. The manager selects a random sample of 10 representatives and determines the number of sales calls each representative made last month and the number of copiers sold. 13-5 5

The Coefficient of Correlation, r LO2 Calculate, test, and interpret the relationship between two variables using the correlation coefficient. The Coefficient of Correlation, r The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables. It shows the direction and strength of the linear relationship between two interval or ratio-scale variables It can range from -1.00 to +1.00. Values of -1.00 or +1.00 indicate perfect and strong correlation. Values close to 0.0 indicate weak correlation. Negative values indicate an inverse relationship and positive values indicate a direct relationship. 13-6 6

Correlation Coefficient - Interpretation LO2 Correlation Coefficient - Interpretation . 13-7 7

Correlation Coefficient - Example LO2 Correlation Coefficient - Example Using the Copier Sales of America data which a scatterplot is shown below, compute the correlation coefficient and coefficient of determination. Using the formula: . 13-8 8

Correlation Coefficient - Example LO2 Correlation Coefficient - Example What does correlation of 0.759 mean? First, it is positive, so we see there is a direct relationship between the number of sales calls and the number of copiers sold. The value of 0.759 is fairly close to 1.00, so we conclude that the association is strong. However, does this mean that more sales calls cause more sales? No, we have not demonstrated cause and effect here, only that the two variables—sales calls and copiers sold—are related. 13-9 9

Testing the Significance of the Correlation Coefficient LO2 Testing the Significance of the Correlation Coefficient H0:  = 0 (the correlation in the population is 0) H1:  ≠ 0 (the correlation in the population is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 13-10 10

H0:  = 0 (the correlation in the population is 0) LO2 Testing the Significance of the Correlation Coefficient – Copier Sales Example H0:  = 0 (the correlation in the population is 0) H1:  ≠ 0 (the correlation in the population is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 t > t0.025,8 or t < -t0.025,8 t > 2.306 or t < -2.306 13-11 11

LO2 Testing the Significance of the Correlation Coefficient – Copier Sales Example Computing t, we get The computed t (3.297) is within the rejection region, therefore, we will reject H0. This means the correlation in the population is not zero. From a practical standpoint, it indicates to the sales manager that there is correlation with respect to the number of sales calls made and the number of copiers sold in the population of salespeople. 13-12 12

LO3 Apply regression analysis to estimate the linear relationship between two variables. In regression analysis we use the independent variable (X) to estimate the dependent variable (Y). The relationship between the variables is linear. Both variables must be at least interval scale. The least squares criterion is used to determine the equation. REGRESSION EQUATION An equation that expresses the linear relationship between two variables. LEAST SQUARES PRINCIPLE Determining a regression equation by minimizing the sum of the squares of the vertical distances between the actual Y values and the predicted values of Y. 13-13 13

Linear Regression Model LO3 Linear Regression Model . 13-14 14

Regression Analysis – Least Squares Principle LO3 Regression Analysis – Least Squares Principle The least squares principle is used to obtain a and b. 13-15 15

Computing the Slope of the Line and the Y-intercept . 13-16 16

Regression Equation - Example LO3 Regression Equation - Example Recall the example involving Copier Sales of America. The sales manager gathered information on the number of sales calls made and the number of copiers sold for a random sample of 10 sales representatives. Use the least squares method to determine a linear equation to express the relationship between the two variables. What is the expected number of copiers sold by a representative who made 20 calls? 13-17 17

Finding and Fitting the Regression Equation - Example LO4 Interpret the regression analysis. Finding and Fitting the Regression Equation - Example Step 1 – Find the slope (b) of the line Step 2 – Find the y-intercept (a) 13-18 18

Testing the Significance of the Slope – Copier Sales Example LO5 Evaluate the significance of the slope of the regression equation. Testing the Significance of the Slope – Copier Sales Example H0: β = 0 (the slope of the linear model is 0) H1: β ≠ 0 (the slope of the linear model is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 t > t0.025,8 or t < -t0.025,8 t > 2.306 or t < -2.306 . 13-19 19

Testing the Significance of the Slope – Copier Sales Example Compute the t statistic and make a conclusion: Conclusion: The slope of the equation is significantly different from zero. 13-20 20

The Standard Error of Estimate LO5 The Standard Error of Estimate The standard error of estimate measures the scatter, or dispersion, of the observed values around the line of regression Formulas used to compute the standard error: . 13-21 21

Standard Error of the Estimate - Example LO5 Standard Error of the Estimate - Example Recall the example involving Copier Sales of America. The sales manager determined the least squares regression equation is given below. Determine the standard error of estimate as a measure of how well the values fit the regression line. 13-22 22

Standard Error of the Estimate - Excel LO5 Standard Error of the Estimate - Excel 13-23 23