KOMPONEN SISTEM TEMU-BALIK INFORMASI

Slides:



Advertisements
Similar presentations
Experimentation of the model in Madeus - VideoMadeus.
Advertisements

Retrieval of Information from Distributed Databases By Ananth Anandhakrishnan.
Multimedia Database Systems
 Grouper: A Dynamic Clustering Interface to Web Search Results Fatih Çalı ş ır Tolga Çekiç Elif Dal Acar Erdinç /9.
Dialogue – Driven Intranet Search Suma Adindla School of Computer Science & Electronic Engineering 8th LANGUAGE & COMPUTATION DAY 2009.
Web- and Multimedia-based Information Systems. Assessment Presentation Programming Assignment.
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) Classic Information Retrieval (IR)
Intelligent Information Retrieval CS 336 –Lecture 2: Query Language Xiaoyan Li Spring 2006 Modified from Lisa Ballesteros’s slides.
Modern Information Retrieval
Information Retrieval Concerned with the: Representation of Storage of Organization of, and Access to Information items.
COMP 6703 eScience Project Slide 1 Ontology-Driven Text Mining for Digital Forensics © 2007 Phan Son Ontology-Driven Text Mining for Digital Forensics.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
A novel log-based relevance feedback technique in content- based image retrieval Reporter: Francis 2005/6/2.
Re-ranking Documents Segments To Improve Access To Relevant Content in Information Retrieval Gary Madden Applied Computational Linguistics Dublin City.
INEX 2009 XML Mining Track James Reed Jonathan McElroy Brian Clevenger.
ReQuest (Validating Semantic Searches) Norman Piedade de Noronha 16 th July, 2004.
Natural Language Query Interface Mostafa Karkache & Bryce Wenninger.
Advance Information Retrieval Topics Hassan Bashiri.
ITCS 6010 Natural Language Understanding. Natural Language Processing What is it? Studies the problems inherent in the processing and manipulation of.
Modern Information Retrieval Chapter 1 Introduction.
Information retrieval Finding relevant data using irrelevant keys Example: database of photographic images sorted by number, date. DBMS: Well structured.
CS580: Building Web Based Information Systems Roger Alexander & Adele Howe The purpose of the course is to teach theory and practice underlying the construction.
The Cognitive Perspective in Information Science Research Anthony Hughes Kristina Spurgin.
Tag Data and Personalized Information Retrieval 1.
ISP 433/533 Week 1 Class Orientation. Get to Know Each Other About instructor: –Huahai Yang, Ph.D. (Michigan, 2003), Assistant Professor About you? –Talk.
Text Mining In InQuery Vasant Kumar, Peter Richards August 25th, 1999.
Information in the Digital Environment Information Seeking Models Dr. Dania Bilal IS 530 Spring 2006.
Xiaoying Gao Computer Science Victoria University of Wellington Intelligent Agents COMP 423.
22 nd January 2004 UITV 2004 NewsBoy: an interactive news retrieval system Joemon M Jose The Information Retrieval Group Department of Computing Science.
1 Automatic Classification of Bookmarked Web Pages Chris Staff Second Talk February 2007.
University of Malta CSA3080: Lecture 4 © Chris Staff 1 of 14 CSA3080: Adaptive Hypertext Systems I Dr. Christopher Staff Department.
GUIDED BY DR. A. J. AGRAWAL Search Engine By Chetan R. Rathod.
Structure of IR Systems INST 734 Module 1 Doug Oard.
By: Namrata Lele Mentors: Dave Vieglais Bruce Wilson 1 VDC/TWG Meeting August 09.
Using Semantic Mapping to Manage Heterogeneity in XLIFF Interoperability by Dave Lewis, Rob Brennan, Alan Meehan, Declan O’Sullivan CNGL Centre for Global.
Information in the Digital Environment Information Seeking Models Dr. Dania Bilal IS 530 Spring 2005.
How Do We Find Information?. Key Questions  What are we looking for?  How do we find it?  Why is it difficult? “A prudent question is one-half of wisdom”
Search Tools and Search Engines Searching for Information and common found internet file types.
Modern Information Retrieval Presented by Miss Prattana Chanpolto Faculty of Information Technology.
Modern information retreival Chapter. 02: Modeling (Latent Semantic Indexing)
Recuperação de Informação Cap. 01: Introdução 21 de Fevereiro de 1999 Berthier Ribeiro-Neto.
Performance Measurement. 2 Testing Environment.
Information Retrieval Transfer Cycle Dania Bilal IS 530 Fall 2007.
What Does the User Really Want ? Relevance, Precision and Recall.
Chapter 8: Evaluation Search Engines Information Retrieval in Practice All slides ©Addison Wesley, 2008.
User-Friendly Systems Instead of User-Friendly Front-Ends Present user interfaces are not accepted because the underlying systems are too difficult to.
Modern Information Retrieval
Xiaoying Gao Computer Science Victoria University of Wellington COMP307 NLP 4 Information Retrieval.
Document Clustering for Natural Language Dialogue-based IR (Google for the Blind) Antoine Raux IR Seminar and Lab Fall 2003 Initial Presentation.
INFORMATION STROAGE AND RETRIEVAL SYSTEM By Ms. Preeti Patel Lecturer School of Library And Information Science DAVV, Indore
1 Personalizing Search via Automated Analysis of Interests and Activities Jaime Teevan, MIT Susan T. Dumais, Microsoft Eric Horvitz, Microsoft SIGIR 2005.
WHIM- Spring ‘10 By:-Enza Desai. What is HCIR? Study of IR techniques that brings human intelligence into search process. Coined by Gary Marchionini.
Image Retrieval and Ranking using L.S.I and Cross View Learning Sumit Kumar Vivek Gupta
SIMS 202, Marti Hearst Final Review Prof. Marti Hearst SIMS 202.
Information Retrieval
Latent Semantic Indexing
موضوع پروژه : بازیابی اطلاعات Information Retrieval
Query Caching in Agent-based Distributed Information Retrieval
Evaluation of IR Performance
BOOSTING IMAGE RETRIEVAL
College Student Management System
Combining Keyword and Semantic Search for Best Effort Information Retrieval  Andrew Zitzelberger 1.
Navigation-Aided Retrieval
Agro Hackathon Hack 5: Agro Portal and VEST Registry
Information Retrieval and Web Design
Recuperação de Informação B
Information Retrieval and Web Design
Recuperação de Informação
Structure of IR Systems
Gizem MISIRLI Gülden OLGUN
Presentation transcript:

KOMPONEN SISTEM TEMU-BALIK INFORMASI 1. USER (PENGGUNA/PEMAKAI) 2. QUERY 3. DOCUMENT 4. INDEX 5. MACHINE (MACTH FUNCTION) USER QUERY DOCUMENT INDEX

Sistem Temu Balik Informasi (Information Retrieval System) User (Pemakai) Query (Pertanyaan) Index (Indeks) Relevant Document (Dokumen Relevan Document (Dokumen) Matcher machine (Mesin Pencocok)

Outline Information retrieval System (IRS) Information Resources Analysis and Representation Organized Information Retrieved Information Matching Query (Istilah Penelusuran ) Formulasi Query Analysed Queries (Search Statements)

Konstruksi/Susunan STBI Online: Dalam susunan yang lebih luas F.W. Lancaster mentions that an information retrieval systems comprises six major sub-systems: the document subsystem the Indexing subsystem 3) the vocabulary subsystem 4) the searching subsystem 5) the user-system interface, and 6) the matching subsystem

Matrik Dokumen- Kata/Istilah Matrik Kata/Istilah -Dokumen 1 D2 D3 D4 D5 Dn D1 D2 D3 D4 D5 D6 T1 1 T2 T3 T5 Tn Matrik Dokumen- Kata/Istilah Matrik Kata/Istilah -Dokumen