P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Anderson localization in BECs
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Semiconductors n D*n If T>0
Theory of the Quantum Mirage*
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Fluctuation conductivity of thin films and nanowires near a parallel-
Superglasses and the nature of disorder-induced SI transition
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Thin-film Giaever transformer
● Problem addressed: Mn-doped GaAs is the leading material for spintronics applications. How does the ferromagnetism arise? ● Scanning Tunneling Microscopy.
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Benjamin Sacépé Institut Néel, CNRS & Université Joseph Fourier, Grenoble Localization of preformed Cooper-pairs in disordered superconductors Lorentz.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Michael Browne 11/26/2007.
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Superconductivity Introduction Disorder & superconductivity : milestones BCS theory Anderson localization Abrikosov, Gorkov Anderson theorem
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Fractal and Pseudopgaped Superconductors: theoretical introduction
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
Charge pumping in mesoscopic systems coupled to a superconducting lead
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Memory effects in electron glasses Markus Müller Eran Lebanon Lev Ioffe Rutgers University, Piscataway NJ 10 August, 2005, Leiden.
Chapter 7 in the textbook Introduction and Survey Current density:
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
Ginzburg Landau phenomenological Theory
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
COCKCROFT INSTITUTE, DARESBURY
Electrical resistance
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Superconductivity in CuxBi2Se3 and its Implications for the Undoped Topological Insulator Garrett Vanacore, Sean Vig, Xiaoxiao Wang, Jiang Wang, University.
J. Appl. Phys. 112, (2012); Scanning Tunneling Microscopy/Spectroscopy Studies of Resistive Switching in Nb-doped.
Electrical Properties of Materials
Interplay of disorder and interactions
Interplay between disorder and interactions
Superconductivity in Systems with Diluted Interactions
Probing Anderson localization of light via weak non-linear effects
How might a Fermi surface die?
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
High Temperature Superconductivity
Analysis of proximity effects in S/N/F and F/S/F junctions
Quantum Phases Beyond Single-atom Condensation
Deformation of the Fermi surface in the
Ginzburg-Landau theory
Presentation transcript:

P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely SZUPRAVEZETÉS ERŐSEN RENDEZETLEN RENDSZEREKBEN. SZUPRAVEZETŐ-SZIGETELŐ ÁTMENTET MoC VÉKONYRÉTEGEKBEN. P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely Centre of Low Temperature Physics, Košice @ Slovak Academy of Sciences & P.J.Šafárik University, Slovakia M. Grajcar and M. Žemlička Comenius University, Bratislava, Slovakia Sss

Démokritosz, Kis diakozmosz "Ha ezt az almát kettõbe vágom, két fél alma marad a kezemben, ha az egyik fél almát ismét két részre vágom, két negyed alma marad, de ha az osztást tovább folytatom, vajon mindig marad-e a kezemben az alma 1/8, 1/16 stb. része? Vagy pedig egy adott pillanatban a következõ osztás eredményeként a megmaradt rész már nem rendelkezik az alma tulajdonságaival?" Démokritosz, Kis diakozmosz Διογένης Λαέρτιος. Βίοι καὶ γνῶμαι τῶν ἐν φιλοσοφίᾳ εὐδοκιμησάντων, σελ. Βιβλίο Θ', 41.

P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely SZUPRAVEZETÉS ERŐSEN RENDEZETLEN RENDSZEREKBEN. SZUPRAVEZETŐ-SZIGETELŐ ÁTMENTET MoC VÉKONYRÉTEGEKBEN. P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely Centre of Low Temperature Physics, Košice @ Slovak Academy of Sciences & P.J.Šafárik University, Slovakia M. Grajcar and M. Žemlička Comenius University, Bratislava, Slovakia Sss

Very dirty superconductors S – I transition – study of the increased disorder for the superconductivity Disorder can be introduced - physical/chemical doping, reduced carrier concentration, sample dimension/thickness In superconductors Anderson’s theory – non magnetic impurities – no influence on Tc - at low disorder At high disorder – Tc is suppressed the normal state resistance increases In metals at l < a (above a critical resistance) transition to the insulating state

Minimum metallic conductivity (maximum sheet resistance) Metal - insulator transition (MIT) in 2d Ioffe-Regel criterion, Prog. Semicond. 1960 When lmin ~ a , electrons localize (l - electron’s mean free path & a - lattice constant) Ioffe Regel Minimum metallic conductivity (maximum sheet resistance)

Superconductor - insulator transition (SIT) in 2d localization of Cooper pairs q=2e insulating films separatrix @ Rs ~ 6.45 kW superconducting films SIT tuned by chem. & phys. disorder, thickness, carrier concentration, magnetic field

How S-I-T is achieved ? Superconductivity - macroscopic wave function amplitude D and phase j Suppressing of sc: amplitude D 0 or phase breaking Bosonic mechanism Phase fluctuations Superconductor goes directly to insulator Cooper pairs survive with finite D without long range phase coherence SC droplets – Bose insulator Fermionic mechanism Amplitude 0 Disorder-enhanced Coulomb interaction destroys Copper pairs, D = 0 Poor metal goes to Fermi insulator via MIT at higher disorder Local studies of superconductivity: DOS, D by STM - important S.M. Hollen, PRB 2013 Recent STM studies strongly support the bosonic picture Understanding SIT important for amorphous superconductors, sc nanowires, HTc’s, ultracold atomic gases, SIT – prototype of disorder driven QPT

Scanning Tunneling Spectroscopy (STS) S-I-N junction with Au tip At low T dI/dV is proportional to the LDOS of SC Low temperatures are important !! Finite lifetime effect (Dynes formula): Parameter G can account for broadening if necessary via substitution of complex E’ = E- iG instead of E in NSBCS

Scanning tunneling spectroscopy in ultrathin TiN films Film thickness 3-5 nm, coherence length x=10 nm Disorder driven: decrease of Tc inhomogeneity of gap D increased coupling ratio 2D/ kTc Sacepé et al., PRL2008

Scanning tunneling spectroscopy in ultrathin TiN films reduced DOS without coherence peaks Tc=1.0 K Tc=0.45 K Tc=1.3 K Pseudogap exists in ultrathin TiN up to 14 Tc due fluctuations, 2D, proximity to SIT, enhanced e-e int. Sacépé, Nature Comm. 2010

STS on SIT phenomenology On approach to SIT (TiN, InO, NbN,...) Tc decrease D decrease smaller or not at all, 2D / kBTc increase D inhomogeneity on scale of x pseudogap appearance V-shape background appearance coherence peaks in SC DOS suppression bosonic scenario? Last decade experiments strongly suggest - bosonic picture of the SIT is universal - motivation N. Trivedi, in book Conductor Insulator Quantum Phase Transitions (Oxford University Press 2012). The most current theories of the disorder-driven SIT predict the formation of puddles of CPs that become phase incoherent with one another with increasing disorder. V. L. Pokrovsky, G. M. Falco, and T. Nattermann, Phys. Rev. Lett. 105, 267001 (2010).

SIT TiN vs. MoC thin film - MOTIVATION Extremely sharp transition SIT @ Rs ~ 3 kW < h/4e2 SIT t <1.3 nm & Dt < 0.1 nm WL + EEI Sacepé et al., PRL2008 MoC – week increase of R(T), week QS NS of tunneling spectra not affected by Strong quantum effects Increase R(T) – strong Quantum States in insulating/metallic normal state e.g. - strong EEI – Altshurer - Aronov effect reduced tunnelling backround in Normal State L. Bartosch et al., EPL 2001

MoC ultra thin film prepared by the reactive magnetron sputtering on single-crystal sapphire substrates ( at 200 oC) in a mixture of Ar and acetylene gas t = 10 nm Rs (10 K) = 344 W, Tc = 6.7 K, kFl = 2 t = 5 nm Rs (10 K) = 850 W, Tc = 3.3 K, kFl = 1.8 t = 3 nm Rs (10 K) = 1227W, Tc = 1.3 K, kFl = 1.3 Disorder - characterized by the sheet resistance, Rs - lowering of thickness leads to higher disorder & lower Tc After sputtering - the surface passivated with photoresist optimization of acetylene pressure to have high Rs and still SC Sheet resistance Rs vs. thickenss @ optimal acetylene pressure

STM - experimental setup in Košice Experimental setup in Košice home made STM head (collaboration with J.G.Rodrigo - UAM Madrid) Dulcinea SPM controller by Nanotec 300mK: Janis SSV 3He refrigerator - acoustic reducer + operation without pumping the 1K pot 8T Janis cryomagnetic system no UHV – samles are at the air during installation - cca. 10 min. Experimental setup in Košice

Scanning Tunneling Spectroscopy (STS) S-I-N junction with Au tip At low T dI/dV is proportional to the LDOS of SC Low temperatures are important !! Finite lifetime effect (Dynes formula): Parameter G can account for broadening if necessary via substitution of complex E’ = E- iG instead of E in NSBCS

deviations 5% - in the range of device noice STM results – 450 mK 10 nm 5 nm 3 nm Homogeneous gap deviations 5% - in the range of device noice

The gapmap fits the surface Topography at 0.5 K Gapmap at 0.5 K small 7-10% variation of D observed in thicker areas with corrugation ~ 1 nm

D = 0.62 meV , G/D = 0.3 D , Tc = 3.5 K, 2D/kBTc = 3.87 10 nm 5 nm 3 nm D = 1.1 meV, G/D = 0.1D , Tc = 6.5 K, 2D/kBTc = 3.85 D = 0.62 meV , G/D = 0.3 D , Tc = 3.5 K, 2D/kBTc = 3.87 D = 0.2 meV , G/D = 0.9 D Tc = 1.35 K, 2D/kBTc = 3.7-4

5 nm strongly disordered MoC films – vortex lattice CITS conductance map at V = 0 mV, 400 nm x 400 nm, T = 0.5 K, H = 1 Tesla CITS Hc2 = 5.4 Tesla, x = 7.5 nm at H = 1 Tesla a = 49 nm Vortices are manifestation of the quantum coherence of the superconducting state – no (strong) phase fluctuations

Summary Fermionic scenario: Bosonic insulator scenario: Tc and D decrease together 2D / kBTc almost not changing No D fluctuations no pseudogap the bosonic picture is not universal Bosonic insulator scenario: Tc and D decrease 2 D / kBTc increase D inhomogeneity on scale of x pseudogap appearance increased disorder – increased Dynes G- increase of ingap states disorder leads to pair-breaking or interface effect (new theory?) [1] P. Szabó, et al., Phys. Rev. B 93, 014505 (2016). [2] M. Žemlička, et al., Phys. Rev. B 92, 224506 (2015.)