Linux/UNIX Programming APUE (Interprocess Communication)

Slides:



Advertisements
Similar presentations
Florida State UniversityCOP5570 – Advanced Unix Programming IPC mechanisms Pipes Sockets System V IPC –Message Queues –Semaphores –Shared Memory.
Advertisements

Unix IPC and Synchronization. Pipes and FIFOs Pipe: a circular buffer of fixed size written by one process and read by another int pipe(int fildes[2])
Shared Memory  Creating a Shared Memory Segment Allocated in byte amounts  Shared Memory Operations Create Attach Detach  Shared Memory Control Remove.
XSI IPC Message Queues Semaphores Shared Memory. XSI IPC Each XSI IPC structure has two ways to identify it An internal (within the Kernel) non negative.
Shared memory. Process A Process B Physical Memory Virtual address space A Virtual address space B Share Instruction memory Data Instruction memory Data.
Inter-process communication (IPC) using Shared Memory & Named Pipes CSE 5520/4520 Wireless Networks.
System V IPC (InterProcess Communication) Messages Queue, Shared Memory, and Semaphores.
Inter-Process Communication, Advanced I/O (Chap 12, 14 in the book “Advanced Programming in the UNIX Environment”) Acknowledgement : Prof. Y. Moon at Kangwon.
Inter Process Communication:  It is an essential aspect of process management. By allowing processes to communicate with each other: 1.We can synchronize.
UNIX IPC CSE 121 Spring 2003 Keith Marzullo. CSE 121 Spring 2003Review of Concurrency2 Creating a UNIX process A process is created by making an exact.
NCHU System & Network Lab Lab 10 Message Queue and Shared Memory.
Inter Process Communication. Introduction Traditionally describe mechanism for message passing between different processes that are running on some operating.
Unix IPC Unix has three major IPC constructs to facilitate interaction between processes: Message Queues (this PowerPoint document) permit exchange of.
Inter-Process Communication: Message Passing
1-1. Executing a New Program
System Config IPC Iris Zhu
1 Chapter 6 Interprocess Communications. 2 Contents u Introduction u Universal IPC Facilities u System V IPC.
Lecture 6 Introduction to Distributed Programming System V IPC: Message Queues, Shared Memory, Semaphores.
Inter-Process Communication Mechanisms CSE331 Operating Systems Design.
Thread Synchronization with Semaphores
S -1 Shared Memory. S -2 Motivation Shared memory allows two or more processes to share a given region of memory -- this is the fastest form of IPC because.
System V IPC Provides three mechanisms for InterProcess Communication (IPC) : Messages : exchange messages with any process or server. Semaphores : allow.
System Commands and Interprocess Communication. chroot int chroot(const char *path); chroot changes the root directory to that specified in path. This.
Lecture 7 Introduction to Distributed Programming System V IPC: Message Queues, Shared Memory, Semaphores.
Sogang University Advanced Operating Systems (Inter-Process Communication - Linux) Advanced Operating Systems (Inter-Process Communication - Linux) Sang.
Florida State UniversityCOP5570 – Advanced Unix Programming Today’s topics System V Interprocess communication (IPC) mechanisms –Message Queues –Semaphores.
1 Semaphores Chapter 7 from Inter-process Communications in Linux: The Nooks & Crannies by John Shapley Gray Publisher: Prentice Hall Pub Date: January.
1 Shared Memory. 2  Introduction  Creating a Shared Memory Segment  Shared Memory Control  Shared Memory Operations  Using a File as Shared Memory.
CE Operating Systems Lecture 13 Linux/Unix interprocess communication.
Semaphores Creating and Accessing Semaphore Sets Semaphore Operations
Interprocess Communication Bosky Agarwal CS 518. Presentation Layout Introduction Pipes FIFOs System V IPC 1.Using pipes 2.Working of pipes 3.Pipe Data.
File descriptor table File descriptor (integer)File name 0stdin 1stdout 2stderr Use open(), read(), write() system calls to access files Think what happens.
UNIX IPC CSC345.
Interprocess Communication Anonymous Pipes Named Pipes (FIFOs) popen() / pclose()
Inter Process Comunication in Linux by Dr P.Padmanabham Professor (CSE)&Director Bharat Institute of Engineering &Technology Hyderabad Mobile
Semaphores Chapter 7 from Inter-process Communications in Linux:
© 2006 RightNow Technologies, Inc. Synchronization September 15, 2006 These people do not actually work at RightNow.
Advanced UNIX IPC Facilities After Haviland, et al.’s book.
Slide 9-1 Copyright © 2004 Pearson Education, Inc. Inter process Communication Mechanisms  Allow arbitrary processes to exchange data and synchronize.
Interprocess Communication
Named Pipes. Kinds of IPC u Mutexes/Conditional Variables/Semaphores u Pipes u Named pipes u Signals u Shared memory u Messages u Sockets.
IPC Message Queue. Data Structure msgque IP_NOUSED.
Linux/UNIX Programming APUE (Interprocess Communication) 문양세 강원대학교 IT 대학 컴퓨터과학전공.
Message Queues. Unix IPC Package ● Unix System V IPC package consists of three things – Messages – allows processes to send formatted data streams to.
Signals & Message queue Inter process mechanism in Linux system 3/24/
Interprocess Communication. Resource Sharing –Kernel: Data structures, Buffers –Processes: Shared Memory, Files Synchronization Methods –Kernel: Wait.
Shared Memory Dr. Yingwu Zhu. Overview System V shared memory Let multiple processes attach a segment of physical memory to their virtual address spaces,
Textbook: Advanced Programming in the UNIX Environment, 2 nd Edition, W. Richard Stevens and Stephen A. Rago 1 Chapter 15. Interprocess Communication System.
Textbook: Advanced Programming in the UNIX Environment, 2 nd Edition, W. Richard Stevens and Stephen A. Rago 1 Chapter 15. Interprocess Communication System.
Linux/UNIX Programming APUE (Process Control) 문양세 강원대학교 IT 대학 컴퓨터과학전공.
Operating Systems Inter-Process Communication Shared Memory & Semaphores Moti Geva
Distributed and Parallel Processing George Wells.
Lecture 7 Introduction to Distributed Programming System V IPC:
Lecture 5 Systems Programming: Unix Processes: Orphans and Zombies
Message queue Inter process communication primitive
Introduction to Distributed Programming System V IPC: Message Queues
Linux Interprocess Communication
Unix IPC Unix has three major IPC constructs to facilitate interaction between processes: Message Queues (this PowerPoint document) permit exchange of.
Lock and IPC (Inter-Process Communication) (Chap 12, 14 in the book “Advanced Programming in the UNIX Environment”) Acknowledgement : Prof. Y. Moon at.
Shared Memory Dr. Yingwu Zhu.
Interprocess Communication-1
Interprocess Communication and Synchronization using System V IPC
Message Queues.
Inter Process Communication
Unix programming Term: Unit-V I PPT Slides
Inter-Process Communication
IPC Prof. Ikjun Yeom TA – Hoyoun
Introduction to Distributed Programming System V IPC:
| Website for Students | VTU -NOTES -Question Papers
Shared Memory Dr. Yingwu Zhu Feb, 2007.
Presentation transcript:

Linux/UNIX Programming APUE (Interprocess Communication) 문양세 강원대학교 IT대학 컴퓨터과학전공

Contents Pipes FIFOs System V IPC Message Queues Shared Memory APUE (Interprocess Communication Pipes FIFOs System V IPC Message Queues Shared Memory Semaphores

IPC using Pipes IPC using regular files IPC using pipes APUE (Interprocess Communication IPC using regular files unrelated processes can share fixed size lack of synchronization IPC using pipes for transmitting data between related processes can transmit an unlimited amount of data automatic synchronization on open()

Pipes in a Linux/Unix Shell (1/2) APUE (Interprocess Communication In a Linux/Unix shell, the pipe symbol is: | (the vertical bar) In a shell, UNIX pipes look like: $ ls -alR | more where the standard output of the program at the left (i.e., the producer) becomes the standard input of the program at the right (i.e., the consumer).

Pipes in a Linux/Unix Shell (2/2) APUE (Interprocess Communication We can have longer pipes: $ wc *.h | sort | grep std

Example (1/2) APUE (Interprocess Communication $ who | sort

Example (2/2) APUE (Interprocess Communication

IPC using Pipes Data transmitting Types of pipes APUE (Interprocess Communication Data transmitting data is written into pipes using the write() system call data is read from a pipe using the read() system call automatic blocking when full or empty Types of pipes (unnamed) pipes named pipes (FIFOs)

Pipes (1/4) Pipes are the oldest form of IPC. Limitations of Pipes: APUE (Interprocess Communication Pipes are the oldest form of IPC. Limitations of Pipes: Half duplex (data flows in one direction) Can only be used between processes that have a common ancestor (Usually used between the parent and child processes) Processes cannot pass pipes and must inherit them from their parent If a process creates a pipe, all its children will inherit it

Pipes (2/4) Two file descriptors are returned through the fd argument APUE (Interprocess Communication #include <unistd.h> int pipe(int fd[2]) Returns: 0 if OK, -1 on error Two file descriptors are returned through the fd argument fd[0]: can be used to read from the pipe, and fd[1]: can be used to write to the pipe Anything that is written on fd[1] may be read by fd[0]. This is of no use in a single process. However, between processes, it gives a method of communication The pipe() system call gives parent-child processes a way to communicate with each other.

Pipes (3/4) parent child parent child pipe kernel pipe kernel APUE (Interprocess Communication parent  child: parent closes fd[0] child closes fd[1] parent  child: parent closes fd[1] child closes fd[0] parent fd[0] child parent fd[1] child fd[1] fd[0] pipe kernel pipe kernel

Pipes (4/4) Read from a pipe with write end closed: (fd[1]이 close된 경우) APUE (Interprocess Communication Read from a pipe with write end closed: (fd[1]이 close된 경우) returns 0 to indicate EOF Write to a pipe with read end closed: (fd[0]가 close된 경우) SIGPIPE generated, write() returns error (errno == EPIPE)

예제: pipe.c (1/2) APUE (Interprocess Communication

예제: pipe.c (2/2) APUE (Interprocess Communication 실행 결과

Contents Pipes FIFOs System V IPC Message Queues Shared Memory APUE (Interprocess Communication Pipes FIFOs System V IPC Message Queues Shared Memory Semaphores

FIFOs (1/2) APUE (Interprocess Communication Pipes can be used only between related processes. (e.g., parent and child processes) FIFOs are "named pipes" that can be used between unrelated processes. A type of file stat.st_mode == FIFO Test with S_ISFIFO() macro

FIFOs (2/2) Creating FIFOs is similar to creating a file. APUE (Interprocess Communication #include <sys/types.h> #include <sys/stat.h> int mkfifo(const char *pathname, mode_t mode); Returns: 0 if OK, -1 on error Creating FIFOs is similar to creating a file. pathname: filename mode: permissons, same as for open() function Using a FIFO is similar to using a file. we can open, close, read, write, unlink, etc., to the FIFO.

Uses of FIFOs APUE (Interprocess Communication Used by shell commands to pass data from one shell pipeline to another, without creating intermediate files. Used in client-server application to pass data between clients and server.

Using FIFOs to Duplicate Output Streams APUE (Interprocess Communication tee(1) copies its standard input to both its standard output and to the file named on its command line. $ mkfifo fifo1 $ prog3 < fifo1 & $ prog1 < infile | tee fifo1 | prog2 fifo1 prog3 infile prog1 tee prog2

An Example using a FIFO APUE (Interprocess Communication

Client-Server Communication Using a FIFO APUE (Interprocess Communication Server creates a “well-known” FIFO to communicate with clients. client well-known FIFO read request server write request . Problem: Server can't reply clients using a single “well-known” FIFO

Contents Pipes FIFOs System V IPC Message Queues Shared Memory APUE (Interprocess Communication Pipes FIFOs System V IPC Message Queues Shared Memory Semaphores (간단히)

System V IPC Message Queues Shared Memory Semaphores APUE (Interprocess Communication Message Queues Send and receive amount of data called “messages”. The sender classifies each message with a type. Shared Memory Shared memory allows two or more processes to share a given region of memory. Readers and writers may use semaphore for synchronization. Semaphores Process synchronization and resource management For example, a semaphore might be used to control access to a device like printer.

Identifiers & Keys APUE (Interprocess Communication Identifier: each IPC structure has a nonnegative integer Key: when creating an IPC structure, a key must be specified (key_t) id = xxxget(key, …) How to access the same IPC?  key in a common header Define a key in a common header Client and server agree to use that key Server creates a new IPC structure using that key Problem when the key is already in use (msgget, semget, shmget returns error) Solution: delete existing key, create a new one again!

IPC System Calls msg/sem/shm get msg/sem/shm ctl msg/sem/shm op APUE (Interprocess Communication msg/sem/shm get Create new or open existing IPC structure. Returns an IPC identifier msg/sem/shm ctl Determine status, set options and/or permissions Remove an IPC identifier msg/sem/shm op Operate on an IPC identifier For example(Message queue) add new msg to a queue (msgsnd) receive msg from a queue (msgrcv)

Permission Structure - skip APUE (Interprocess Communication ipc_perm is associated with each IPC structure. Defines the permissions and owner. struct ipc_perm { uid_t uid; /* owner's effective user id */ gid_t gid; /* owner's effective group id */ uid_t cuid; /* creator's effective user id */ gid_t cgid; /* creator's effective group id */ mode_t mode; /* access modes */ ulong seq; /* slot usage sequence number */ key_t key; /* key */ };

Message Queues (1/2) Linked list of messages msgget msgsnd msgrcv APUE (Interprocess Communication Linked list of messages Stored in kernel Identified by message queue identifier (in kernel) msgget Create a new queue or open existing queue. msgsnd Add a new message to a queue msgrcv Receive a message from a queue Fetching order: based on type

Message Queues (2/2) - skip APUE (Interprocess Communication Each queue has a structure struct msqid_ds { struct ipc_perm msg_perm; struct msg *msg_first; /* ptr to first msg on queue */ struct msg *msg_last; /* ptr to last msg on queue */ ulong msg_cbytes; /* current # bytes on queue */ ulong msg_qnum; /* # msgs on queue */ ulong msg_qbytes; /* max # bytes on queue */ pid_t msg_lspid; /* pid of last msgsnd() */ pid_t msg_lrpid; /* pid of last msgrcv() */ time_t msg_stime; /* last-msgsnd() time */ time_t msg_rtime; /* last-msgrcv() time */ time_t msg_ctime; /* last-change time */ }; We can get the structure using msgctl() function. Actually, however, we don’t need to know the structure in detail.

msgget() Create new or open existing queue flag : ipc_perm.mode APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> int msgget(key_t key, int flag); Returns: msg queue ID if OK, -1 on error Create new or open existing queue flag : ipc_perm.mode Example msg_qid = msgget(DEFINED_KEY, IPC_CREAT | 0666);

msgctl() - skip Performs various operations on a queue APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> int msgctl(int msqid, int cmd, struct msqid_ds *buf); Returns: 0 if OK, -1 on error Performs various operations on a queue cmd = IPC_STAT: fetch the msqid_ds structure for this queue, storing it in buf cmd = IPC_SET: set the following four fields from buf: msg_perm.uid, msg_perm.gid, msg_perm.mode, and msg_qbytes cmd = IPC_RMID: remove the message queue.

msgsnd() msgsnd() places a message at the end of the queue. APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag); Returns: 0 if OK, -1 on error msgsnd() places a message at the end of the queue. ptr: pointer that points to a message nbytes: length of message data if flag = IPC_NOWAIT: IPC_NOWAIT is similar to the nonblocking I/O flag for file I/O. Structure of messages struct mymesg { long mtype; /* positive message type */ char mtext[512]; /* message data, of length nbytes */ };

msgrcv() msgrcv() retrieves a message from a queue. APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> int msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag); Returns: data size in message if OK, -1 on error msgrcv() retrieves a message from a queue. type == 0: the first message on the queue is returned type > 0: the first message on the queue whose message type equals type is returned type < 0: the first message on the queue whose message type is the lowest value less than or equal to the absolute value of type is returned flag may be given by IPC_NOWAIT

예제: sender.c (1/2) APUE (Interprocess Communication

예제: sender.c (2/2) APUE (Interprocess Communication

예제: receiver.c (1/2) APUE (Interprocess Communication

예제: receiver.c (2/2) APUE (Interprocess Communication

예제: sender.c receiver.c (3/4) APUE (Interprocess Communication 실행 결과

예제: ipcs –q (1/2) APUE (Interprocess Communication Message Queue 확인

예제: ipcs –q (2/2) APUE (Interprocess Communication Message Queue 확인

Shared Memory Allows multiple processes to share a region of memory APUE (Interprocess Communication Allows multiple processes to share a region of memory Fastest form of IPC: no need of data copying between client & server If a shared memory segment is attached It become a part of a process data space, and shared among multiple processes Readers and writers may use semaphore to synchronize access to a shared memory segment

Shared Memory Segment Structure - skip APUE (Interprocess Communication Each shared memory has a structure struct shmid_ds { struct ipc_perm shm_perm; struct anon_map *shm_amp; /* pointer in kernel */ int shm_segsz; /* size of segment in bytes */ ushort shm_lkcnt; /* # of times segment is being locked */ pid_t shm_lpid; /* pid of last shmop() */ pid_t shm_cpid; /* pid of creator */ ulong shm_nattch; /* # of current attaches */ ulong shm_cnattch; /* used only for shminfo() */ time_t shm_atime; /* last-attach time */ time_t shm_dtime; /* last-detach time */ time_t shm_ctime; /* last-change time */ }; We can get the structure using shmctl() function. Actually, however, we don’t need to know the structure in detail.

shmget() Obtain a shared memory identifier APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> int shmget(key_t key, int size, int flag); Returns: shared memory ID if OK, -1 on error Obtain a shared memory identifier size: is the size of the shared memory segment flag: ipc_perm.mode Example shmId = shmget(key, size, PERM|IPC_CREAT|IPC_EXCL|0666);

shmctl() - skip Performs various shared memory operations APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> int shmctl(int shmid, int cmd, struct shmid_ds *buf); Returns: 0 if OK, -1 on error Performs various shared memory operations cmd = IPC_STAT: fetch the shmid_ds structure into buf cmd = IPC_SET: set the following three fields from buf: shm_perm.uid, shm_perm.gid, and shm_perm.mode cmd = IPC_RMID: remove the shared memory segment set from the system

shmat() Attached a shared memory to an address APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> void *shmat (int shmid, void *addr, int flag); Returns: pointer to shared memory segment if OK, -1 on error Attached a shared memory to an address flag = SHM_RDONLY: the segment is read-only addr==0: at the first address selected by the kernel (recommended!) addr!=0: at the address given by addr

Memory Layout command-line arguments and environment variables APUE (Interprocess Communication shared memory uninitialized data (bss) stack heap initialized data text high address low address command-line arguments and environment variables 0xf7fffb2c 0xf77e86a0 0xf77d0000 shared memory of 100,000 bytes 0x0003d2c8 0x00024c28 malloc of 100,000 bytes array[] of 40,000 bytes 상기 주소는 절대적인 값이 아니며, 시스템에 따라 달라질 수 있음

shmdt() Detach a shared memory segment #include <sys/types.h> APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> void shmdt (void *addr); Returns: 0 if OK, -1 on error Detach a shared memory segment

예제: memlayer.c (1/3) APUE (Interprocess Communication

예제: memlayer.c (2/3) APUE (Interprocess Communication

예제: memlayer.c (3/3) command-line arguments and environment variables APUE (Interprocess Communication shared memory uninitialized data (bss) stack heap initialized data text high address low address command-line arguments and environment variables 0xf7fffb2c 0xf77e86a0 0xf77d0000 shared memory of 100,000 bytes 0x0003d2c8 0x00024c28 malloc of 100,000 bytes array[] of 40,000 bytes

예제: shm_wr.c APUE (Interprocess Communication

예제: shm_rd.c APUE (Interprocess Communication

예제: shm_wr/shm_rd, ipcs/ipcrm APUE (Interprocess Communication 실행 결과

Semaphores APUE (Interprocess Communication A counter to provide access to shared data object for multiple processes (복수의 프로세스가 데이터를 공유하는데 사용하는 카운터) To obtain a shared resource: 1. Test semaphore that controls the resource (확인하여) 2. If value > 0, value--, grant use (양수이면, 감소시키고 사용하고) 3. If value == 0, sleep until value > 0 (0이면 기다림) 4. Release resource, value ++ (다 쓴 후에는 다시 양수로 만듦) Step 1, 2 must be an atomic operation

Semaphore Structure – skip APUE (Interprocess Communication Each semaphore has a structure struct semid_ds { struct ipc_perm sem_perm; struct sem *sem_base; /*ptr to first semaphore in set */ ushort sem_nsems; /* # of semaphors in set */ time_t sem_otime; /* last-semop() time */ time_t sem_ctime; /* last-change time */ }; struct sem { ushort semval; /* semaphore value, always >= 0 */ pid_t sempid; /* pid for last operation */ ushort semncnt; /* # processes awaiting semval > currval */ ushort semzcnt; /* # processes awaiting semval = 0 */ We can get the structure using semctl() function. Actually, however, we don’t need to know the structure in detail.

semget() – skip Obtain a semaphore ID APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> int semget(key_t key, int nsems, int flag); Returns: semaphore ID if OK, -1 on error Obtain a semaphore ID nsems: sem_nsens (# of semaphores in set) flag: ipc_perm.mode

semctl() – skip APUE (Interprocess Communication #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> int semctl(int semid, int semnum, int cmd, union semun arg); union semun { int val; /* for SETVAL */ struct semid_ds *buf; /* for IPC_START and IPC_SET */ ushort *array; /* for GETALL and SETALL */ }; To use semaphore, please refer to the textbook and manuals related semaphore.

ipcs, ipcrm ipcs:System V IPC의 상태를 확인하는 명령어 ipcrm: 정의된(생성된)IPC를 삭제함 APUE (Interprocess Communication ipcs:System V IPC의 상태를 확인하는 명령어 $ ipcs // IPC 정보를 확인 (q, m, s 모두) $ ipcs –q // Message Queue 정보를 확인 $ ipcs –m // Shared Memory 정보를 확인 $ ipcs –s // Semaphore 정보를 확인 ipcrm: 정의된(생성된)IPC를 삭제함 $ ipcrm –q id // Message Queue를 삭제 $ ipcrm –m id // Shared Memory를 삭제 $ ipcrm –s id // Semaphore를 삭제