EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
Comparison of different MIMO-OFDM signal detectors for LTE
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
EE359 – Lecture 16 Outline MIMO Beamforming MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver Design Maximum-Likelihood, Decision Feedback, Sphere Decoder.
IERG 4100 Wireless Communications
EE360: Lecture 9 Outline Multiuser OFDM Announcements: Project abstract due next Friday Multiuser OFDM Adaptive Techniques “OFDM with adaptive subcarrier,
APPLICATION OF SPACE-TIME CODING TECHNIQUES IN THIRD GENERATION SYSTEMS - A. G. BURR ADAPTIVE SPACE-TIME SIGNAL PROCESSING AND CODING – A. G. BURR.
Wireless Communications: Lecture 2 Professor Andrea Goldsmith
Final Announcements Final Friday, 12/13, 12:15-3:15, here (Gates B3) l Covers Chapters , , 12, (plus earlier chapters covered.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM)
Course Summary Signal Propagation and Channel Models
EE359 – Lecture 18 Outline Review of Last Lecture Multicarrier Modulation Overlapping Substreams OFDM FFT Implementation OFDM Design Issues.
EE359 – Lecture 19 Outline Review of Last Lecture OFDM FFT Implementation OFDM Design Issues Introduction to Spread Spectrum ISI and Interference Rejection.
Ali Al-Saihati ID# Ghassan Linjawi
NTUEE Confidential Toward MIMO MC-CDMA Speaker : Pei-Yun Tsai Advisor : Tzi-Dar Chiueh 2004/10/25.
Iterative Multi-user Detection for STBC DS-CDMA Systems in Rayleigh Fading Channels Derrick B. Mashwama And Emmanuel O. Bejide.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
5: Capacity of Wireless Channels Fundamentals of Wireless Communication, Tse&Viswanath 1 5. Capacity of Wireless Channels.
3: Diversity Fundamentals of Wireless Communication, Tse&Viswanath 1 3. Diversity.
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE 359: Wireless Communications Announcements and Course Summary
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 18 Outline Announcements last HW posted, due Thurs 12/4 at 5pm (no late HWs) Last regular class lecture, Monday 12/1, 9:30-10:45 (as usual)
EE359 – Lecture 17 Outline Review of Last Lecture MIMO Decision-Feedback Receivers MIMO Sphere Decoders Other MIMO Design Issues Introduction to ISI Countermeasures.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 19 Outline Announcements Final Exam Announcements HW 8 (last HW) due Sunday 5pm (no late HWs) Bonus lecture today 6-8pm (pizza/cake); Hewlett.
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE 359: Wireless Communications Announcements and Course Summary
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
Space Time Codes.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EE359 – Lecture 12 Outline Maximal Ratio Combining
Shamir Stein Ackerman Elad Lifshitz Timor Israeli
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Distributed MIMO Patrick Maechler April 2, 2008.
Space Time Coding and Channel Estimation
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
EE359 – Lecture 18 Outline Multiuser Systems Announcements
EE359 – Lecture 12 Outline Announcements Transmit Diversity
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
EE359 – Lecture 18 Outline Announcements Review of Last Lecture
EE359 – Lecture 17 Outline Announcements Review of Last Lecture
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 19 Outline Announcements Review of Last Lecture
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 18 Outline Announcements Spread Spectrum
EE359 – Lecture 7 Outline Shannon Capacity
EE359 – Lecture 11 Outline Announcements Introduction to Diversity
EE359 – Lecture 19 Outline Multiple Access
Presentation transcript:

EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation Announcements: HW due Fri, new HW to be posted, due week after Thanksgiving End-of-Quarter schedule and possible bonus lecture Project comments today (I promise). No OHs after class but available by phone and next week in person. MIMO Receiver Design Linear Receivers, Sphere Decoder Other MIMO Design Issues Space-time coding, adaptive techniques, limited feedback ISI Countermeasures Multicarrier Modulation

End of Quarter Schedule Today is last lecture this week Lectures week of 11/21: None! Normal lectures week of 11/28 Lectures week of 12/5 (rescheduled): 12/5 (Monday): 12-1:20 in Thorton 102 w/lunch 12/9 (Friday): 9:30-10:30am (class summary), 10:30-11:30am (bonus lecture on advanced topics), w/donuts Final exam is 12/15 from 12.15-3.15 pm in this room (Huang 18).

Review of last lecture Capacity of MIMO Systems Depends on what is known at TX/RX and if channel static or fading For static channel with perfect CSI at TX and RX, power water-filling over space is optimal: In fading waterfill over space (based on short-term power constraint) Or over space-time (long-term constraint) (correction, Soleil was right) Without transmitter channel knowledge, capacity metric is based on an outage probability Pout is the probability that the channel capacity given the channel realization is below the transmission rate. Massive MIMO: C=min(Mt,Mr)Blog(1+r) (10.17)

Review of Last Lecture (Cont’d) Beamforming: Scalar transmission Principle vectors of U and V are weights: maximizes SNR y=uHHvx+uHn HD Video Diversity-Multiplexing Tradeoff: high SNR Can use some antennas for diversity, some for capacity gain: How antennas used depends on system metric If requirements unmet, need more antennas Need more antennas Voice Video

MIMO Receiver Design Sphere Decoder: Optimal Receiver: Maximum likelihood: finds input symbol most likely to have resulted in received vector Exponentially complex # of streams and constellation size Linear Receivers Zero-Forcing: forces off-diagonal elements to zero, enhances noise Minimum Mean Square Error: Balances zero forcing against noise enhancement Sphere Decoder: Only considers possibilities within a sphere of received symbol. If minimum distance symbol is within sphere, optimal, otherwise null is returned

Other MIMO Design Issues Not covered in lecture/HW/exams Space-time coding: Map symbols to both space and time via space-time block and convolutional codes. For OFDM systems, codes are also mapped over frequency tones. Adaptive techniques: Fast and accurate channel estimation Adapt the use of transmit/receive antennas Adapting modulation and coding. Limited feedback transmit precoding: Partial CSI introduces interference in parallel decomp: can use interference cancellation at RX TX codebook design for quantized channel

ISI Countermeasures Equalization Multicarrier Modulation Signal processing at receiver to eliminate ISI Complex at high data rates, performs poorly in fast-fading Not used in state-of-the-art wireless systems Multicarrier Modulation Break data stream into lower-rate substreams modulated onto narrowband flat-fading subchannels Spread spectrum Superimpose a fast (wideband) spreading sequence on top of data sequence, allows resolution for combining or attenuation of multipath components. Antenna techniques (Massive MIMO) (Highly) directional antennas reduce delay spread/ISI

Multicarrier Modulation R/N bps QAM Modulator x cos(2pf0t) cos(2pfNt) S R bps Serial To Parallel Converter R/N bps QAM Modulator Breaks data into N substreams Substream modulated onto separate carriers Substream passband BW is B/N for B total BW B/N<Bc implies flat fading on each subcarrier (no ISI)

Overlapping Substreams Can have completely separate subchannels Required passband bandwidth is B. OFDM overlaps substreams Substreams (symbol time TN) separated in RX Minimum substream separation is 1/TN for rectangular pulses Total required bandwidth is B/2 B/N f0 fN-1

Main Points MIMO RX design trades complexity for performance ML detector optimal - exponentially complex DF receivers prone to error propagation Sphere decoders allow performance tradeoff via radius Other MIMO design issues include space-time coding, adaptation, codebooks for limited feedback ISI mitigated through equalization, multicarrier modulation (MCM) or spread spectrum Today, equalizers often too complex or can’t track channel. MCM splits channel into NB flat fading subchannels Can overlap subcarriers to preserve bandwidth