Role of entanglement in extracting information on quantum processes

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Quantum metrology: dynamics vs. entanglement
October 1, 2007 Quantum Optical Sensing: Single Mode, Multi-Mode, and Continuous Time Jeffrey H. Shapiro.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Atomic Clocks Niles Bohr Institute PhD Student: Johannes Borregaard
Sub-Planck Structure and Weak Measurement
Interferometer configurations for Gravitational Wave Detectors
Detuned Twin-Signal-Recycling
Lisa Barsotti (LIGO-MIT)
Squeezing in Gravitational Wave Detectors
Quantum noise reduction using squeezed states in LIGO
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Using Quantum Means to Understand and Estimate Relativistic Effects
Overview of quantum noise suppression techniques
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Is there a future for LIGO underground?
Generation of squeezed states using radiation pressure effects
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
Enhancing the astrophysical reach of LIGO with squeezed light
Australia-Italy Workshop October 2005
Quantum Optics and Macroscopic Quantum Measurement
Squeezed states in GW interferometers
Quantum studies in LIGO Lab
Quantum mechanics on giant scales
Controlled Splitting of an Atomic Wavepacket
The Grand Unified Theory of Quantum Metrology
Optical Squeezing For Next Generation Interferometric Gravitational Wave Detectors Michael Stefszky, Sheon Chua, Conor Mow-Lowry, Ben Buchler, Kirk McKenzie,
The Grand Unified Theory of Quantum Metrology
Squeezed Light Techniques for Gravitational Wave Detection
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
c = speed of light (ms-1, constant)
Presentation transcript:

Role of entanglement in extracting information on quantum processes R. Demkowicz-Dobrzański, Faculty of Physics, University of Warsaw, Poland

Gravitational wave detectors utilizing squeezed light Quantum Metrology Atomic clocks Gravitational wave detectors utilizing squeezed light Acelerometers, gravitometers based on atomic interferometry Magnetometry utilizing BEC spin squeezed states

Particle physics experiment as a quantum channel estimation problem What are the optimal input states? What are the optimal measurements? Does entanglement of the input particles help?

„Classical” interferometry example of an estimator: Estimator uncertainty: Standard Limit (Shot noise)

Entanglement enhanced precision Hong-Ou-Mandel interference &

Entanglement enhanced precision GHZ states Estimator preparation State Measuremnt Heisenberg limit Standard Quantum Limit

Quantum interferometry as a quantum channel estimation problem = ,,Classical’’ scheme Entanglement-enhanced scheme Quantum Cramer-Rao bound: GHZ states maximize the quantum Fisher information

Optimal interferometry in presence of losses? Problem: Analizing and optimizing Quantum Fisher Information for mixed states dificult in the limit of large numer of photons

Channel simulation idea If we find a simulation of the channel… =

Channel simulation idea Quantum Fisher information is nonincreasing under parameter independent channels! We call the simulation classical:

Geometric construction of (local) channel simulation

Geometric construction of (local) channel simulation Heisenberg scaling is generically lost! Entanglement provides constant factor precision enhancement RDD, J. Kolodynski, M. Guta, Nature Communications 3, 1063 (2012) RDD, L. Maccone Phys. Rev. Lett. 113, 250801 (2014)

Good news: fundamental limit can be saturated in practice!!! C. Caves, Phys. Rev D 23, 1693 (1981) coherent state + squeezed vacuum Fundamental bound In the strong intensity regime: Weak squezing + simple measurement + simple estimator = optimal strategy!

GEO600 interferometer at the fundamental quantum bound coherent light +10dB squeezed fundamental bound The most general quantum strategies could additionally improve the precision by at most 8% RDD, K. Banaszek, R. Schnabel, Phys. Rev. A, 041802(R) (2013)

Squeezed states in LIGO? Expected reduction in noise on the level of 3dB (50%) above 100Hz Squeezed states in LIGO? Squeezed light to be used in LIGO in 2018 Transmission expected to be on the level of Observable distance increased by a factor of 2, number of sources by a factor of 8, thanks to entanglement of photons!!!

Entanglement enhanced sensing in high energy Physics??? Gravitational wave detectors sensitivity limits Atomic-clocks stability limits RDD, K. Banaszek, R. Schnabel Phys. Rev. A 88, 041802(R) (2013) RDD, J. Kolodynski, M. Jarzyna, Progress in Optics 60, 345 (2015) K. Macieszczak, M. Fraas, RDD, New J. Phys. 16, 113002 (2014) K. Chabuda, I. Leroux, RDD, New J. Phys. 18, 083035 (2016) Quantum metrological precision bounds RDD, J. Kolodynski, M. Guta, Nature Communications 3, 1063 (2012) RDD, L. Maccone, Phys. Rev. Lett. 113, 250801 (2014) Entanglement enhanced sensing in high energy Physics??? Quantum computing speed-up limits RDD, M. Markiewicz, Phys. Rev. A 91, 062322 (2015)