SAL - Structure, Ampliutde, Location

Slides:



Advertisements
Similar presentations
Institut für Physik der Atmosphäre Effect of Drop Oscillations on Polarimetric Radar Parameters Martin Hagen & Miklós Szakáll.
Advertisements

Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
QPF verification of the 4 model versions at 7 km res. (COSMO-I7, COSMO-7, COSMO-EU, COSMO-ME) with the 2 model versions at 2.8 km res. (COSMO- I2, COSMO-IT)
VERIFICATION Highligths by WG5. 9° General MeetingAthens September Working package/Task on “standardization” The “core” Continuous parameters: T2m,
Verification of GEOM and FAKE cases with SAL Contribution from U Mainz Christiane Hofmann, Matthias Zimmer, Heini Wernli Kindly presented by Christian.
MAP D-PHASE Forecast Demonstration Project Instrument of WWRP Last phase of MAP Mathias Rotach, MeteoSwiss.
Statistical Postprocessing of LM Weather Parameters Ulrich Damrath Volker Renner Susanne Theis Andreas Hense.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
Assessment of hailstorms in WRF weather simulations over Switzerland in summer Sensitivity, climatology, comparison with observation data Andrey.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Quantitative precipitation forecasts in the Alps – first.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz New automatic weather type classifications at MeteoSwiss.
Exploring the Use of Object- Oriented Verification at the Hydrometeorological Prediction Center Faye E. Barthold 1,2, Keith F. Brill 1, and David R. Novak.
Institut für Physik der Atmosphäre POLDIRAD Polarization Diversity Doppler Radar Martin Hagen DLR Oberpfaffenhofen.
Univ of AZ WRF Model Verification. Method NCEP Stage IV data used for precipitation verification – Stage IV is composite of rain fall observations and.
COSMO General Meeting Zurich, 2005 Institute of Meteorology and Water Management Warsaw, Poland- 1 - Verification of the LM at IMGW Katarzyna Starosta,
COSMO General Meeting – Moscow Sept 2010 Some results from operational verification in Italy Angela Celozzi - Federico Grazzini Massimo Milelli -
CARPE DIEM Centre for Water Resources Research NUID-UCD Contribution to Area-3 Dusseldorf meeting 26th to 28th May 2003.
Verification Precipitation verification (overestimation): a common view of the behaviour of the LM, aLMo and LAMI Francis Schubiger and Pirmin Kaufmann,
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
4th Int'l Verification Methods Workshop, Helsinki, 4-6 June Methods for verifying spatial forecasts Beth Ebert Centre for Australian Weather and.
Kick-Off-Treffen SPP, Bonn October 2006 Improved Water Vapour and Wind Initialisation for Precipitation Forecasts: Impact Studies with the ECMWF.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistical Characteristics of High- Resolution COSMO.
P. Ñurmi / WWRP QPF Verification - Prague 1 Operational QPF Verification of End Products and NWP Pertti Nurmi Finnish Meteorological Institute.
June 19, 2007 GRIDDED MOS STARTS WITH POINT (STATION) MOS STARTS WITH POINT (STATION) MOS –Essentially the same MOS that is in text bulletins –Number and.
Latest results in verification over Poland Katarzyna Starosta, Joanna Linkowska Institute of Meteorology and Water Management, Warsaw 9th COSMO General.
Added Value of Convection-Resolving Climate Simulations (CRCSs) Andreas F. Prein 1, Andreas Gobiet 1, Martin Suklitsch 1, Heimo Truhetz 1, Naumen K. Awan.
Evaluation of the Latent heat nudging scheme for the rainfall assimilation at the meso- gamma scale Andrea Rossa* and Daniel Leuenberger MeteoSwiss *current.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Accounting for Change: Local wind forecasts from the high-
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Using seasonal forecasts to estimate current climate.
Real-time Verification of Operational Precipitation Forecasts using Hourly Gauge Data Andrew Loughe Judy Henderson Jennifer MahoneyEdward Tollerud Real-time.
Page 1© Crown copyright Scale selective verification of precipitation forecasts Nigel Roberts and Humphrey Lean.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz First Experience with KENDA at MeteoSwiss Daniel Leuenberger,
Priority project Advanced interpretation COSMO General Meeting, 18. September 2006 Pierre Eckert.
Simulation of heavy precipitation events in Madeira Island using resolution of 1 km Simulation de précipitations orographiques intenses sur Madère (résolution.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz The challenge to verify operational weather warnings.
Feature-based (object-based) Verification Nathan M. Hitchens National Severe Storms Laboratory.
Verification of Precipitation Areas Beth Ebert Bureau of Meteorology Research Centre Melbourne, Australia
Object-oriented verification of WRF forecasts from 2005 SPC/NSSL Spring Program Mike Baldwin Purdue University.
Typhoon Forecasting and QPF Technique Development in CWB Kuo-Chen Lu Central Weather Bureau.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
U. Damrath, COSMO GM, Athens 2007 Verification of numerical QPF in DWD using radar data - and some traditional verification results for surface weather.
Page 1© Crown copyright 2004 The use of an intensity-scale technique for assessing operational mesoscale precipitation forecasts Marion Mittermaier and.
Slide 1 International Typhoon Workshop Tokyo 2009 Slide 1 Impact of increased satellite data density in sensitive areas Carla Cardinali, Peter Bauer, Roberto.
WRF Verification Toolkit Workshop, Boulder, February 2007 Spatial verification of NWP model fields Beth Ebert BMRC, Australia.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Probabilities from COSMO-2 derived with the neighborhood.
Progress in Radar Assimilation at MeteoSwiss Daniel Leuenberger 1, Marco Stoll 2 and Andrea Rossa 3 1 MeteoSwiss 2 Geographisches Institut, University.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Weather type dependant fuzzy verification of precipitation.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
Verification Priority Project ‘Quantitative Precipitation Forecast’ Progress report Task 1.1 and 1.2 Silke Dierer and Francis Schubiger MeteoSwiss.
11 Short-Range QPF for Flash Flood Prediction and Small Basin Forecasts Prediction Forecasts David Kitzmiller, Yu Zhang, Wanru Wu, Shaorong Wu, Feng Ding.
Hirlam-Aladin All Staff Meeting Jose A. Garcia-Moya. AEMET. Spain. On behalf of Carlos Santos, Anna Ghelli (ECMWF) & Imanol Guerrero ECMWF & AEMET.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Statistics of COSMO Forecast Departures in View of.
André Walser MeteoSwiss, Zurich
Fuzzy verification using the Fractions Skill Score
Daniela Rezacova, Zbynek Sokol IAP ASCR, Prague, Czech Republic
Spatial Verification Intercomparison Meeting, 20 February 2007, NCAR
Multi-scale validation of high resolution precipitation products
A New Method for Evaluating Regional Air Quality Forecasts
Multiscale aspects of cloud-resolving simulations over complex terrain
Composite-based Verification
How well can we determine the tropopause
Daniel Leuenberger1, Christian Keil2 and George Craig2
Predictability and dynamical processes
Workshop Results WG5 COSMO General Meeting
Thomas Gastaldo, Virginia Poli, Chiara Marsigli
An Inter-comparison of 5 HRPPs with 3-Hourly Gauge Estimates
SRNWP-PEPS COSMO General Meeting September 2005
Verification of Tropical Cyclone Forecasts
Some Verification Highlights and Issues in Precipitation Verification
Presentation transcript:

SAL - Structure, Ampliutde, Location Institute for Atmospheric Physics – University of Mainz Name of method: SAL - Structure, Ampliutde, Location Investigators: Marcus Paulat, Heini Wernli – Institute for Atmospheric Physics, University of Mainz Christoph Frei – Bundesamt für Meteorologie und Klimatologie, MeteoSwiss Zürich Martin Hagen - Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen Literature / References: none - presentations at workshops in Boulder (2006) and ECMWF (2007) - manuscript in preparation (Wernli et al., MWR) 16. February 2007

What kind of data? only gridded data fields: so far only precipitation, in principle also applicable to other fields with well-structures signatures (e.g. wind gusts) presently used FC data: ECMWF and COSMO-LM precipitation forecasts (accumulated over 1 or 24 h) over Germany on rotated lon/lat grid with 7 km horizontal resolution presently used OBS data: gridded rain gauge data set on same grid as models, based upon ~4000 stations with 24 h values; 1-h disaggregated fields through combination of rain gauge and radar data Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Basic strategy (I): General concept consider precipitation in pre-specified area (e.g. river catchment) SAL consists of three independent components components address quality of structure (S), amplitude (A) and location (L) of QPF in that area according to SAL a forecast is perfect if S = A = L = 0 S requires the definition of precipitation objects, using a threshold value but: no attribution between precipitation objects in forecast and observations! Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Basic strategy (II): Definition of the components A = (D(Rmod) - D(Robs)) / 0.5*(D(Rmod) + D(Robs)) D(…) denotes the area-mean value (e.g. catchment) normalized amplitude error in considered area A  [-2, …, 0, …, +2] L = |r(Rmod) - r(Robs)| / distmax r(…) denotes the centre of gravity of the precipitation field in the area normalized location error in considered area L  [0, …, 1] A = amplitude error L = location error S = structure error S = (V(Rmod*) - V(Robs*)) / 0.5*(V(Rmod*) + V(Robs*)) V(…) denotes the weighted volume average of all scaled precipitation objects in considered area normalized structure error in considered area S  [-2, …, 0, …, +2] Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

circular precipitation object Basic strategy (III): The S component scaling for every object: R* = R / Rmax; R*  [Rthresh/Rmax, …, 1] R R* Rmax 1 S gives information about the size and shape of the objects in a way that is essentially independent of their amplitudes Rthresh Rthresh/Rmax x x V(R) V(R*) circular precipitation object Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Basic strategy (IV): Example 1 Rmax 1 OBS x V(R*) x R R* 1 MOD Rmax x V(R*) x A < 0 S = 0 Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Basic strategy (V): Example 2 Rmax 1 OBS x V(R*) x R R* 1 MOD Rmax x V(R*) x A = 0 S > 0 Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

summer seasons 2001-2004 for catchment Rhine S A L - statistics: 24h accumulated A-component 1 -1 -2 2 S-component summer seasons 2001-2004 for catchment Rhine aLMo ECMWF Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Kind of verification information / Verification questions 3 independent components to quantify quality of structure, amplitude and location of QPF information is valid for a pre-specified area (e.g. river catchment, state, field campaign area, …) questions: - is the domain averaged precipitation amount correctly forecast? -> A - is the centre of the precipitation distribution in the domain correctly forecast? -> L - does the forecast capture the typical structure of the precipitation field (e.g. large broad vs. small peaked objects)? -> S Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Strength relatively intuitive physically meaningful information about amplitude, location and structure of QPF relatively intuitive SAL approach is close to “subjective human judgement” (claim) no attribution between objects is required (difficult for small objects) computationally simple Marcus Paulat Christoph Frei Martin Hagen Heini Wernli

Weaknesses and limitations non-perfect QPFs can yield S = A = L = 0 (slight modification of L component is underway) no consideration of orientation of objects currently very simple definition of objects (threshold value) S value is sensitive to choice of threshold used for object definition (tests are underway to quantify sensitivity) so far only preliminary results for Germany have been computed Marcus Paulat Christoph Frei Martin Hagen Heini Wernli