Osmoregulation and Excretion

Slides:



Advertisements
Similar presentations
Osmoregulation and Excretion
Advertisements

Ch. 44 Osmoregulation and Excretion
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Ch. 44 – Osmoregulation and Excretion Physiological systems of animals.
Osmoregulation & Excretion. A Balancing Act  Physiological systems of fishes operate in an internal fluid environment that may not match their external.
Regulating The Internal Environment Ch. 44. The Excretory System Osmoregulation: management of the body’s water content & solute composition Controlled.
Osmoregulation and Excretion. Osmosis Over time the rates of water uptake and loss must balance. Osmosis- movement of water across a selectively permeable.
Freshwater animals show adaptations that reduce water uptake and conserve solutes Desert and marine animals face desiccating environments that can quickly.
Homeostasis and Endocrine Signaling
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Freshwater animals show adaptations that reduce water uptake and conserve solutes Desert and marine animals face desiccating environments that can quickly.
Osmoregulation and Excretion Chapter 44. Osmoregulation A balancing act The physiological systems of animals  Operate in a fluid environment The relative.
Osmoregulation and Excretion CHAPTER 44. WATER BALANCE Osmolarity - total solute concentration (M) = moles of solute per liter Osmolarity - total solute.
Osmoregulation Chapter 44.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Concept 44.1: Osmoregulation balances the uptake and loss of water and.
Lecture #19 Date________ Chapter 44 ~ Regulating the Internal Environment.
Osmoregulation Chapter 44.
Fig Osmoregulation and Excretion Chapter 44 Osmoregulation.
Chapter 44 Regulating the Internal Environment. Homeostasis: regulation of internal environment Thermoregulation internal temperature Osmoregulation solute.
Lecture #19 Date________ Chapter 44 ~ Regulating the Internal Environment.
Osmoregulation and Excretion OSMOSIS Cells require a balance between osmotic gain and loss of water Water uptake and loss are balanced by being.
Excretion and osmoregulation. Universal needs All cells need aqueous environment Problems: Balance water and solutes= osmoregulation Nitrogenous waste.
Osmoregulation and Excretion
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Concept 44.5: Hormonal circuits link kidney function, water balance, and.
EXTERNAL ENVIRONMENT Mouth Food CO 2 O2O2 ANIMAL Digestive system Respiratory system Circulatory system Urinary system Heart Interstitial fluid Body cells.
Osmosis and Osmolarity Cells require a balance between uptake and loss of water Osmolarity, the solute concentration of a solution, determines the movement.
OSMOREGULATION AND EXCRETION Copyright © 2009 Pearson Education, Inc.
Principles of Biology BIOL 100C: Introductory Biology III The Excretory System Dr. P. Narguizian Fall 2012.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Test info Average: 15 out of 30 Range: 3 – 24 Correction due: Friday Lab notebooks: Monday Add data to table coming around Data up on website later today.
Excretory Systems Ch 44 Controlling the internal environment Osmoregulation Nitrogenous wastes Excretory systems Mammalian excretory systems Adaptations.
Concept 44.4: The nephron is organized for stepwise processing of blood filtrate The mammalian kidney conserves water by producing urine that is much more.
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Overview: Excretion and Osmoregulation A Balancing Act
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Kidney.
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
How does an albatross drink saltwater without ill effect?
Osmoregulation and Excretion
Kidneys : Nephrons = the Functional Unit
Osmoregulation and Excretion
Osmoregulation and Excretion
Chapter 44 – Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation and Excretion
Osmoregulation Physiological systems of animals operate in a fluid environment Relative concentrations of water and solutes must be maintained within.
Chpt. 44 Osmoregulation & Excretion
Chapter 25. Control of the Internal Environment
Osmoregulation and Excretion
Chapter 44 Osmoregulation and Excretion
Chapter 44 Date_______ Regulating the Internal Environment.
Osmoregulation and Excretion
Bozeman Osmoregulation - 197
Osmoregulation and Excretion
Test info Average: 15 out of 30 Range: 3 – 24.
Test info Average: 15 out of 30 Range: 3 – 24 Correction due: Friday
Presentation transcript:

Osmoregulation and Excretion Chapter 44 Osmoregulation and Excretion

Overview: A Balancing Act Physiological systems of animals operate in a fluid environment Relative concentrations of water and solutes must be maintained within fairly narrow limits Osmoregulation regulates solute concentrations and balances the gain and loss of water

Freshwater animals show adaptations that reduce water uptake and conserve solutes Desert and marine animals face desiccating environments that can quickly deplete body water Excretion gets rid of nitrogenous metabolites and other waste products

Fig. 44-1 Figure 44.1 How does an albatross drink saltwater without ill effect?

Concept 44.1: Osmoregulation balances the uptake and loss of water and solutes Osmoregulation is based largely on controlled movement of solutes between internal fluids and the external environment

Osmosis and Osmolarity Cells require a balance between osmotic gain and loss of water Osmolarity, the solute concentration of a solution, determines the movement of water across a selectively permeable membrane If two solutions are isoosmotic, the movement of water is equal in both directions If two solutions differ in osmolarity, the net flow of water is from the hypoosmotic to the hyperosmotic solution

Selectively permeable membrane Fig. 44-2 Selectively permeable membrane Solutes Net water flow Water Figure 44.2 Solute concentration and osmosis Hyperosmotic side Hypoosmotic side

Osmotic Challenges Osmoconformers, consisting only of some marine animals, are isoosmotic with their surroundings and do not regulate their osmolarity Osmoregulators expend energy to control water uptake and loss in a hyperosmotic or hypoosmotic environment

Most animals are stenohaline; they cannot tolerate substantial changes in external osmolarity Euryhaline animals can survive large fluctuations in external osmolarity

Fig. 44-3 Figure 44.3 Sockeye salmon (Oncorhynchus nerka), euryhaline osmoregulators

Marine Animals Most marine invertebrates are osmoconformers Most marine vertebrates and some invertebrates are osmoregulators Marine bony fishes are hypoosmotic to sea water They lose water by osmosis and gain salt by diffusion and from food They balance water loss by drinking seawater and excreting salts

Fig. 44-4 Gain of water and salt ions from food Excretion of salt ions from gills Osmotic water loss through gills and other parts of body surface Uptake of water and some ions in food Uptake of salt ions by gills Osmotic water gain through gills and other parts of body surface Gain of water and salt ions from drinking seawater Excretion of salt ions and small amounts of water in scanty urine from kidneys Excretion of large amounts of water in dilute urine from kidneys Figure 44.4 Osmoregulation in marine and freshwater bony fishes: a comparison (a) Osmoregulation in a saltwater fish (b) Osmoregulation in a freshwater fish

Excretion of salt ions and small amounts of water in Fig. 44-4a Gain of water and salt ions from food Excretion of salt ions from gills Osmotic water loss through gills and other parts of body surface Figure 44.4a Osmoregulation in marine and freshwater bony fishes: a comparison Gain of water and salt ions from drinking seawater Excretion of salt ions and small amounts of water in scanty urine from kidneys (a) Osmoregulation in a saltwater fish

Freshwater Animals Freshwater animals constantly take in water by osmosis from their hypoosmotic environment They lose salts by diffusion and maintain water balance by excreting large amounts of dilute urine Salts lost by diffusion are replaced in foods and by uptake across the gills

dilute urine from kidneys Fig. 44-4b Uptake of water and some ions in food Uptake of salt ions by gills Osmotic water gain through gills and other parts of body surface Figure 44.4b Osmoregulation in marine and freshwater bony fishes: a comparison Excretion of large amounts of water in dilute urine from kidneys (b) Osmoregulation in a freshwater fish

Animals That Live in Temporary Waters Some aquatic invertebrates in temporary ponds lose almost all their body water and survive in a dormant state This adaptation is called anhydrobiosis

(a) Hydrated tardigrade (b) Dehydrated tardigrade Fig. 44-5 100 µm 100 µm Figure 44.5 Anhydrobiosis (a) Hydrated tardigrade (b) Dehydrated tardigrade

Land Animals Land animals manage water budgets by drinking and eating moist foods and using metabolic water Desert animals get major water savings from simple anatomical features and behaviors such as a nocturnal life style

Water balance in a kangaroo rat (2 mL/day) Water balance in a human Fig. 44-6 Water balance in a kangaroo rat (2 mL/day) Water balance in a human (2,500 mL/day) Ingested in food (0.2) Ingested in food (750) Ingested in liquid (1,500) Water gain (mL) Derived from metabolism (1.8) Derived from metabolism (250) Figure 44.6 Water balance in two terrestrial mammals Feces (0.09) Feces (100) Water loss (mL) Urine (0.45) Urine (1,500) Evaporation (1.46) Evaporation (900)

Water balance in a kangaroo rat (2 mL/day) Water balance in a human Fig. 44-6a Water balance in a kangaroo rat (2 mL/day) Water balance in a human (2,500 mL/day) Ingested in food (0.2) Ingested in food (750) Ingested in liquid (1,500) Water gain (mL) Figure 44.6 Water balance in two terrestrial mammals Derived from metabolism (1.8) Derived from metabolism (250)

Water balance in a kangaroo rat (2 mL/day) Water balance in a human Fig. 44-6b Water balance in a kangaroo rat (2 mL/day) Water balance in a human (2,500 mL/day) Feces (0.09) Feces (100) Water loss (mL) Urine (0.45) Urine (1,500) Figure 44.6 Water balance in two terrestrial mammals Evaporation (1.46) Evaporation (900)

Energetics of Osmoregulation Osmoregulators must expend energy to maintain osmotic gradients

Transport Epithelia in Osmoregulation Animals regulate the composition of body fluid that bathes their cells Transport epithelia are specialized epithelial cells that regulate solute movement They are essential components of osmotic regulation and metabolic waste disposal They are arranged in complex tubular networks An example is in salt glands of marine birds, which remove excess sodium chloride from the blood

EXPERIMENT Nasal salt gland Nostril with salt secretions Ducts Fig. 44-7 EXPERIMENT Nasal salt gland Ducts Nostril with salt secretions Figure 44.7 How do seabirds eliminate excess salt from their bodies?

Vein Artery Secretory tubule Secretory cell Salt gland Capillary Fig. 44-8 Vein Artery Secretory tubule Secretory cell Salt gland Capillary Secretory tubule Transport epithelium NaCl NaCl Direction of salt movement Figure 44.8 Countercurrent exchange in salt-excreting nasal glands Central duct Blood flow Salt secretion (a) (b)

Concept 44.2: An animal’s nitrogenous wastes reflect its phylogeny and habitat The type and quantity of an animal’s waste products may greatly affect its water balance Among the most important wastes are nitrogenous breakdown products of proteins and nucleic acids Some animals convert toxic ammonia (NH3) to less toxic compounds prior to excretion

Proteins Nucleic acids Amino acids Nitrogenous bases Amino groups Fig. 44-9 Proteins Nucleic acids Amino acids Nitrogenous bases Amino groups Most aquatic animals, including most bony fishes Mammals, most amphibians, sharks, some bony fishes Many reptiles (including birds), insects, land snails Figure 44.9 Nitrogenous wastes Ammonia Urea Uric acid

Most aquatic animals, including most bony fishes Mammals, most Fig. 44-9a Most aquatic animals, including most bony fishes Mammals, most amphibians, sharks, some bony fishes Many reptiles (including birds), insects, land snails Figure 44.9 Nitrogenous wastes Ammonia Urea Uric acid

Forms of Nitrogenous Wastes Different animals excrete nitrogenous wastes in different forms: ammonia, urea, or uric acid

Ammonia Animals that excrete nitrogenous wastes as ammonia need lots of water They release ammonia across the whole body surface or through gills

Urea The liver of mammals and most adult amphibians converts ammonia to less toxic urea The circulatory system carries urea to the kidneys, where it is excreted Conversion of ammonia to urea is energetically expensive; excretion of urea requires less water than ammonia

Uric Acid Insects, land snails, and many reptiles, including birds, mainly excrete uric acid Uric acid is largely insoluble in water and can be secreted as a paste with little water loss Uric acid is more energetically expensive to produce than urea

The Influence of Evolution and Environment on Nitrogenous Wastes The kinds of nitrogenous wastes excreted depend on an animal’s evolutionary history and habitat The amount of nitrogenous waste is coupled to the animal’s energy budget

Concept 44.3: Diverse excretory systems are variations on a tubular theme Excretory systems regulate solute movement between internal fluids and the external environment

Key functions of most excretory systems: Excretory Processes Most excretory systems produce urine by refining a filtrate derived from body fluids Key functions of most excretory systems: Filtration: pressure-filtering of body fluids Reabsorption: reclaiming valuable solutes Secretion: adding toxins and other solutes from the body fluids to the filtrate Excretion: removing the filtrate from the system

Filtration Capillary Excretory tubule Reabsorption Secretion Excretion Fig. 44-10 Filtration Capillary Filtrate Excretory tubule Reabsorption Figure 44.10 Key functions of excretory systems: an overview Secretion Urine Excretion

Survey of Excretory Systems Systems that perform basic excretory functions vary widely among animal groups They usually involve a complex network of tubules

Protonephridia A protonephridium is a network of dead-end tubules connected to external openings The smallest branches of the network are capped by a cellular unit called a flame bulb These tubules excrete a dilute fluid and function in osmoregulation

Nucleus of cap cell Cilia Flame bulb Interstitial fluid flow Fig. 44-11 Nucleus of cap cell Cilia Flame bulb Interstitial fluid flow Tubule Opening in body wall Figure 44.11 Protonephridia: the flame bulb system of a planarian Tubules of protonephridia Tubule cell

Metanephridia Each segment of an earthworm has a pair of open-ended metanephridia Metanephridia consist of tubules that collect coelomic fluid and produce dilute urine for excretion

Coelom Capillary network Internal opening Components of Fig. 44-12 Coelom Capillary network Components of a metanephridium: Internal opening Figure 44.12 Metanephridia of an earthworm Collecting tubule Bladder External opening

Malpighian Tubules In insects and other terrestrial arthropods, Malpighian tubules remove nitrogenous wastes from hemolymph and function in osmoregulation Insects produce a relatively dry waste matter, an important adaptation to terrestrial life

Malpighian tubules Salt, water, and nitrogenous wastes Fig. 44-13 Digestive tract Rectum Hindgut Intestine Midgut (stomach) Malpighian tubules Salt, water, and nitrogenous wastes Feces and urine Figure 44.13 Malpighian tubules of insects Rectum Reabsorption HEMOLYMPH

Kidneys Kidneys, the excretory organs of vertebrates, function in both excretion and osmoregulation

Structure of the Mammalian Excretory System The mammalian excretory system centers on paired kidneys, which are also the principal site of water balance and salt regulation Each kidney is supplied with blood by a renal artery and drained by a renal vein Urine exits each kidney through a duct called the ureter Both ureters drain into a common urinary bladder, and urine is expelled through a urethra Animation: Nephron Introduction

Figure 44.14 The mammalian excretory system Renal medulla Posterior vena cava Renal cortex Renal artery and vein Kidney Aorta Renal pelvis Ureter Urinary bladder Ureter Urethra (a) Excretory organs and major associated blood vessels (b) Kidney structure Section of kidney from a rat 4 mm Afferent arteriole from renal artery Glomerulus Juxtamedullary nephron Cortical nephron 10 µm Bowman’s capsule SEM Proximal tubule Peritubular capillaries Renal cortex Figure 44.14 The mammalian excretory system Efferent arteriole from glomerulus Collecting duct Distal tubule Renal medulla Branch of renal vein Collecting duct Descending limb To renal pelvis Loop of Henle Ascending limb Vasa recta (c) Nephron types (d) Filtrate and blood flow

Figure 44.14ab The mammalian excretory system Fig. 44-14ab Renal medulla Posterior vena cava Renal cortex Renal artery and vein Kidney Aorta Renal pelvis Ureter Urinary bladder Ureter Urethra Figure 44.14ab The mammalian excretory system Section of kidney from a rat (a) Excretory organs and major associated blood vessels (b) Kidney structure 4 mm

(a) Excretory organs and major associated blood vessels Fig. 44-14a Posterior vena cava Renal artery and vein Kidney Aorta Ureter Figure 44.14a The mammalian excretory system Urinary bladder Urethra (a) Excretory organs and major associated blood vessels

The mammalian kidney has two distinct regions: an outer renal cortex and an inner renal medulla

Renal medulla Renal cortex Renal pelvis Ureter Section of kidney Fig. 44-14b Renal medulla Renal cortex Renal pelvis Figure 44.14b The mammalian excretory system Ureter Section of kidney from a rat (b) Kidney structure 4 mm

Figure 44.14cd The mammalian excretory system Fig. 44-14cd Afferent arteriole from renal artery Glomerulus Juxtamedullary nephron Cortical nephron 10 µm Bowman’s capsule SEM Proximal tubule Peritubular capillaries Renal cortex Efferent arteriole from glomerulus Collecting duct Distal tubule Renal medulla Branch of renal vein Collecting duct Descending limb To renal pelvis Figure 44.14cd The mammalian excretory system Loop of Henle Ascending limb Vasa recta (c) Nephron types (d) Filtrate and blood flow

The nephron, the functional unit of the vertebrate kidney, consists of a single long tubule and a ball of capillaries called the glomerulus Bowman’s capsule surrounds and receives filtrate from the glomerulus

Juxtamedullary Cortical nephron nephron Renal cortex Collecting duct Fig. 44-14c Juxtamedullary nephron Cortical nephron Renal cortex Collecting duct Figure 44.14c The mammalian excretory system Renal medulla To renal pelvis (c) Nephron types

10 µm Afferent arteriole from renal artery Glomerulus Bowman’s capsule Fig. 44-14d Afferent arteriole from renal artery Glomerulus 10 µm Bowman’s capsule SEM Proximal tubule Peritubular capillaries Efferent arteriole from glomerulus Distal tubule Branch of renal vein Collecting duct Descending limb Figure 44.14d The mammalian excretory system Loop of Henle Ascending limb Vasa recta (d) Filtrate and blood flow

Fig. 44-14e 10 µm SEM Figure 44.14d The mammalian excretory system

Filtration of the Blood Filtration occurs as blood pressure forces fluid from the blood in the glomerulus into the lumen of Bowman’s capsule Filtration of small molecules is nonselective The filtrate contains salts, glucose, amino acids, vitamins, nitrogenous wastes, and other small molecules

Pathway of the Filtrate From Bowman’s capsule, the filtrate passes through three regions of the nephron: the proximal tubule, the loop of Henle, and the distal tubule Fluid from several nephrons flows into a collecting duct, all of which lead to the renal pelvis, which is drained by the ureter Cortical nephrons are confined to the renal cortex, while juxtamedullary nephrons have loops of Henle that descend into the renal medulla

Blood Vessels Associated with the Nephrons Each nephron is supplied with blood by an afferent arteriole, a branch of the renal artery that divides into the capillaries The capillaries converge as they leave the glomerulus, forming an efferent arteriole The vessels divide again, forming the peritubular capillaries, which surround the proximal and distal tubules

Vasa recta are capillaries that serve the loop of Henle The vasa recta and the loop of Henle function as a countercurrent system

Concept 44.4: The nephron is organized for stepwise processing of blood filtrate The mammalian kidney conserves water by producing urine that is much more concentrated than body fluids

From Blood Filtrate to Urine: A Closer Look Proximal Tubule Reabsorption of ions, water, and nutrients takes place in the proximal tubule Molecules are transported actively and passively from the filtrate into the interstitial fluid and then capillaries Some toxic materials are secreted into the filtrate The filtrate volume decreases Animation: Bowman’s Capsule and Proximal Tubule

Descending Limb of the Loop of Henle Reabsorption of water continues through channels formed by aquaporin proteins Movement is driven by the high osmolarity of the interstitial fluid, which is hyperosmotic to the filtrate The filtrate becomes increasingly concentrated

Ascending Limb of the Loop of Henle In the ascending limb of the loop of Henle, salt but not water is able to diffuse from the tubule into the interstitial fluid The filtrate becomes increasingly dilute

Animation: Loop of Henle and Distal Tubule The distal tubule regulates the K+ and NaCl concentrations of body fluids The controlled movement of ions contributes to pH regulation Animation: Loop of Henle and Distal Tubule

Animation: Collecting Duct The collecting duct carries filtrate through the medulla to the renal pelvis Water is lost as well as some salt and urea, and the filtrate becomes more concentrated Urine is hyperosmotic to body fluids Animation: Collecting Duct

Proximal tubule Distal tubule Filtrate CORTEX Loop of Henle OUTER Fig. 44-15 Proximal tubule Distal tubule NaCl Nutrients H2O HCO3– H2O K+ NaCl HCO3– H+ NH3 K+ H+ Filtrate CORTEX Loop of Henle NaCl H2O OUTER MEDULLA NaCl NaCl Collecting duct Figure 44.15 The nephron and collecting duct: regional functions of the transport epithelium Key Urea Active transport NaCl H2O Passive transport INNER MEDULLA

Solute Gradients and Water Conservation Urine is much more concentrated than blood The cooperative action and precise arrangement of the loops of Henle and collecting ducts are largely responsible for the osmotic gradient that concentrates the urine NaCl and urea contribute to the osmolarity of the interstitial fluid, which causes reabsorption of water in the kidney and concentrates the urine

The Two-Solute Model In the proximal tubule, filtrate volume decreases, but its osmolarity remains the same The countercurrent multiplier system involving the loop of Henle maintains a high salt concentration in the kidney This system allows the vasa recta to supply the kidney with nutrients, without interfering with the osmolarity gradient Considerable energy is expended to maintain the osmotic gradient between the medulla and cortex

The collecting duct conducts filtrate through the osmolarity gradient, and more water exits the filtrate by osmosis Urea diffuses out of the collecting duct as it traverses the inner medulla Urea and NaCl form the osmotic gradient that enables the kidney to produce urine that is hyperosmotic to the blood

Fig. 44-16-1 Osmolarity of interstitial fluid (mOsm/L) 300 300 300 300 H2O CORTEX 400 400 H2O H2O H2O OUTER MEDULLA 600 600 Figure 44.16 How the human kidney concentrates urine: the two-solute model H2O H2O 900 900 Key H2O Active transport INNER MEDULLA 1,200 Passive transport 1,200

Fig. 44-16-2 Osmolarity of interstitial fluid (mOsm/L) 300 300 300 100 100 300 H2O NaCl CORTEX 400 200 400 H2O NaCl H2O NaCl H2O NaCl OUTER MEDULLA 600 400 600 Figure 44.16 How the human kidney concentrates urine: the two-solute model H2O NaCl H2O NaCl 900 700 900 Key H2O NaCl Active transport INNER MEDULLA 1,200 Passive transport 1,200

Fig. 44-16-3 Osmolarity of interstitial fluid (mOsm/L) 300 300 300 100 100 300 300 H2O NaCl H2O CORTEX 400 200 400 400 H2O NaCl H2O NaCl H2O NaCl H2O NaCl H2O NaCl H2O OUTER MEDULLA 600 400 600 600 Figure 44.16 How the human kidney concentrates urine: the two-solute model H2O NaCl H2O Urea H2O NaCl H2O 900 700 900 Key Urea H2O NaCl H2O Active transport INNER MEDULLA Urea 1,200 1,200 Passive transport 1,200

Adaptations of the Vertebrate Kidney to Diverse Environments The form and function of nephrons in various vertebrate classes are related to requirements for osmoregulation in the animal’s habitat

Mammals The juxtamedullary nephron contributes to water conservation in terrestrial animals Mammals that inhabit dry environments have long loops of Henle, while those in fresh water have relatively short loops

Birds and Other Reptiles Birds have shorter loops of Henle but conserve water by excreting uric acid instead of urea Other reptiles have only cortical nephrons but also excrete nitrogenous waste as uric acid

Fig. 44-17 Figure 44.17 The roadrunner (Geococcyx californianus), an animal well adapted for conserving water

Freshwater Fishes and Amphibians Freshwater fishes conserve salt in their distal tubules and excrete large volumes of dilute urine Kidney function in amphibians is similar to freshwater fishes Amphibians conserve water on land by reabsorbing water from the urinary bladder

Marine Bony Fishes Marine bony fishes are hypoosmotic compared with their environment and excrete very little urine

Concept 44.5: Hormonal circuits link kidney function, water balance, and blood pressure Mammals control the volume and osmolarity of urine The kidneys of the South American vampire bat can produce either very dilute or very concentrated urine This allows the bats to reduce their body weight rapidly or digest large amounts of protein while conserving water

Fig. 44-18 Figure 44.18 A vampire bat (Desmodus rotundas), a mammal with a unique excretory situation

Animation: Effect of ADH Antidiuretic Hormone The osmolarity of the urine is regulated by nervous and hormonal control of water and salt reabsorption in the kidneys Antidiuretic hormone (ADH) increases water reabsorption in the distal tubules and collecting ducts of the kidney An increase in osmolarity triggers the release of ADH, which helps to conserve water Animation: Effect of ADH

Fig. 44-19 COLLECTING DUCT LUMEN Osmoreceptors in hypothalamus trigger release of ADH. INTERSTITIAL FLUID Thirst Hypothalamus COLLECTING DUCT CELL ADH ADH receptor Drinking reduces blood osmolarity to set point. cAMP ADH Second messenger signaling molecule Pituitary gland Increased permeability Storage vesicle Distal tubule Exocytosis Aquaporin water channels H2O H2O reab- sorption helps prevent further osmolarity increase. STIMULUS: Increase in blood osmolarity H2O Figure 44.19 Regulation of fluid retention by antidiuretic hormone (ADH) Collecting duct (b) Homeostasis: Blood osmolarity (300 mOsm/L) (a)

Fig. 44-19a-1 Osmoreceptors in hypothalamus trigger release of ADH. Thirst Hypothalamus ADH Pituitary gland STIMULUS: Increase in blood osmolarity Figure 44.19a Regulation of fluid retention by antidiuretic hormone (ADH) Homeostasis: Blood osmolarity (300 mOsm/L) (a)

Fig. 44-19a-2 Osmoreceptors in hypothalamus trigger release of ADH. Thirst Hypothalamus Drinking reduces blood osmolarity to set point. ADH Pituitary gland Increased permeability Distal tubule H2O reab- sorption helps prevent further osmolarity increase. STIMULUS: Increase in blood osmolarity Figure 44.19a Regulation of fluid retention by antidiuretic hormone (ADH) Collecting duct Homeostasis: Blood osmolarity (300 mOsm/L) (a)

COLLECTING DUCT CELL ADH ADH receptor cAMP Storage vesicle Exocytosis Fig. 44-19b COLLECTING DUCT LUMEN INTERSTITIAL FLUID COLLECTING DUCT CELL ADH ADH receptor cAMP Second messenger signaling molecule Storage vesicle Exocytosis Figure 44.19b Regulation of fluid retention by antidiuretic hormone (ADH) Aquaporin water channels H2O H2O (b)

Mutation in ADH production causes severe dehydration and results in diabetes insipidus Alcohol is a diuretic as it inhibits the release of ADH

EXPERIMENT RESULTS Fig. 44-20 Prepare copies of human aqua- porin genes. Aquaporin gene Promoter Synthesize RNA transcripts. Mutant 1 Mutant 2 Wild type H2O (control) Inject RNA into frog oocytes. Transfer to 10 mOsm solution. Aquaporin protein Figure 44.20 Can aquaporin mutations cause diabetes insipidus? RESULTS Injected RNA Permeability (µm/s) Wild-type aquaporin 196 None 20 Aquaporin mutant 1 17 Aquaporin mutant 2 18

EXPERIMENT Prepare copies of human aqua- porin genes. Aquaporin gene Fig. 44-20a EXPERIMENT Prepare copies of human aqua- porin genes. Aquaporin gene Promoter Synthesize RNA transcripts. Mutant 1 Mutant 2 Wild type H2O (control) Inject RNA into frog oocytes. Figure 44.20 Can aquaporin mutations cause diabetes insipidus? Transfer to 10 mOsm solution. Aquaporin protein

RESULTS Injected RNA Permeability (µm/s) Wild-type aquaporin 196 None Fig. 44-20b RESULTS Injected RNA Permeability (µm/s) Wild-type aquaporin 196 None 20 Aquaporin mutant 1 17 Figure 44.20 Can aquaporin mutations cause diabetes insipidus? Aquaporin mutant 2 18

The Renin-Angiotensin-Aldosterone System The renin-angiotensin-aldosterone system (RAAS) is part of a complex feedback circuit that functions in homeostasis A drop in blood pressure near the glomerulus causes the juxtaglomerular apparatus (JGA) to release the enzyme renin Renin triggers the formation of the peptide angiotensin II

Angiotensin II Raises blood pressure and decreases blood flow to the kidneys Stimulates the release of the hormone aldosterone, which increases blood volume and pressure

Fig. 44-21-1 Distal tubule Renin Juxtaglomerular apparatus (JGA) STIMULUS: Low blood volume or blood pressure Figure 44.21 Regulation of blood volume and pressure by the renin-angiotensin-aldosterone system (RAAS) Homeostasis: Blood pressure, volume

Fig. 44-21-2 Liver Distal tubule Angiotensinogen Renin Angiotensin I Juxtaglomerular apparatus (JGA) ACE Angiotensin II STIMULUS: Low blood volume or blood pressure Figure 44.21 Regulation of blood volume and pressure by the renin-angiotensin-aldosterone system (RAAS) Homeostasis: Blood pressure, volume

Fig. 44-21-3 Liver Distal tubule Angiotensinogen Renin Angiotensin I Juxtaglomerular apparatus (JGA) ACE Angiotensin II STIMULUS: Low blood volume or blood pressure Adrenal gland Figure 44.21 Regulation of blood volume and pressure by the renin-angiotensin-aldosterone system (RAAS) Aldosterone Increased Na+ and H2O reab- sorption in distal tubules Arteriole constriction Homeostasis: Blood pressure, volume

Homeostatic Regulation of the Kidney ADH and RAAS both increase water reabsorption, but only RAAS will respond to a decrease in blood volume Another hormone, atrial natriuretic peptide (ANP), opposes the RAAS ANP is released in response to an increase in blood volume and pressure and inhibits the release of renin

Fig. 44-UN1 Animal Inflow/Outflow Urine Freshwater fish Does not drink water Large volume of urine Salt in H2O in (active trans- port by gills) Urine is less concentrated than body fluids Salt out Bony marine fish Drinks water Small volume of urine Salt in H2O out Urine is slightly less concentrated than body fluids Salt out (active transport by gills) Terrestrial vertebrate Drinks water Moderate volume of urine Salt in (by mouth) Urine is more concentrated than body fluids H2O and salt out

Animal Inflow/Outflow Urine Freshwater fish Large volume of urine Fig. 44-UN1a Animal Inflow/Outflow Urine Freshwater fish Does not drink water Large volume of urine Salt in H2O in (active trans- port by gills) Urine is less concentrated than body fluids Salt out

Animal Inflow/Outflow Urine Bony marine fish Drinks water Small volume Fig. 44-UN1b Animal Inflow/Outflow Urine Bony marine fish Drinks water Small volume of urine Salt in H2O out Urine is slightly less concentrated than body fluids Salt out (active transport by gills)

Animal Inflow/Outflow Urine Drinks water Moderate volume of urine Fig. 44-UN1c Animal Inflow/Outflow Urine Terrestrial vertebrate Drinks water Moderate volume of urine Salt in (by mouth) Urine is more concentrated than body fluids H2O and salt out

Fig. 44-UN2

You should now be able to: Distinguish between the following terms: isoosmotic, hyperosmotic, and hypoosmotic; osmoregulators and osmoconformers; stenohaline and euryhaline animals Define osmoregulation, excretion, anhydrobiosis Compare the osmoregulatory challenges of freshwater and marine animals Describe some of the factors that affect the energetic cost of osmoregulation

Describe and compare the protonephridial, metanephridial, and Malpighian tubule excretory systems Using a diagram, identify and describe the function of each region of the nephron Explain how the loop of Henle enhances water conservation Describe the nervous and hormonal controls involved in the regulation of kidney function