Practical Private Range Search Revisited

Slides:



Advertisements
Similar presentations
Monomi: Practical Analytical Query Processing over Encrypted Data
Advertisements

Querying Encrypted Data using Fully Homomorphic Encryption Murali Mani, UMFlint Talk given at CIDR, Jan 7,
Functional Encryption & Property Preserving Encryption
A Privacy Preserving Index for Range Queries
Multi-Dimensional Range Query over Encrypted Data Authors: Elaine Shi, Joint work with John Bethencourt, Hubert Chan, Dawn Song, Adrian Perrig Slides originated.
Efficient Information Retrieval for Ranked Queries in Cost-Effective Cloud Environments Presenter: Qin Liu a,b Joint work with Chiu C. Tan b, Jie Wu b,
Fast Algorithms For Hierarchical Range Histogram Constructions
Orthogonal Security With Cipherbase 1 Microsoft Research 2 UW-Madison 3 ETH-Zurich Arvind Arasu 1 Spyros Blanas 2 Ken Eguro 1 Donald Kossmann 3 Ravi Ramamurthy.
C-Store: Data Management in the Cloud Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY Jun 5, 2009.
Structured Encryption and Controlled Disclosure Melissa Chase Seny Kamara Microsoft Research Asiacrypt '10 1.
INTRODUCTION PROBLEM FORMULATION FRAMEWORK AND PRIVACY REQUIREMENTS FOR MRSE PRIVACY-PRESERVING AND EFFICIENT MRSE PERFORMANCE ANALYSIS RELATED WORK CONCLUSION.
CryptDB: A Practical Encrypted Relational DBMS Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan MIT CSAIL New England Database Summit 2011.
Exploiting Correlated Attributes in Acquisitional Query Processing Amol Deshpande University of Maryland Joint work with Carlos Sam
SafeQ: Secure and Efficient Query Processing in Sensor Networks Fei Chen and Alex X. Liu Department of Computer Science and Engineering Michigan State.
Privacy and Integrity Preserving in Distributed Systems Presented for Ph.D. Qualifying Examination Fei Chen Michigan State University August 25 th, 2009.
K-Ary Search on Modern Processors Fakultät Informatik, Institut Systemarchitektur, Professur Datenbanken Benjamin Schlegel, Rainer Gemulla, Wolfgang Lehner.
ObliviStore High Performance Oblivious Cloud Storage Emil StefanovElaine Shi
Protecting data privacy and integrity in clouds By Jyh-haw Yeh Computer Science Boise state University.
Ch 4. The Evolution of Analytic Scalability
Privacy Preserving Query Processing in Cloud Computing Wen Jie
Secure Cloud Database using Multiparty Computation.
Mehdi Kargar Aijun An York University, Toronto, Canada Keyword Search in Graphs: Finding r-cliques.
Wai Kit Wong, Ben Kao, David W. Cheung, Rongbin Li, Siu Ming Yiu.
Data Confidentiality on Clouds Sharad Mehrotra University of California, Irvine.
Merkle trees Introduced by Ralph Merkle, 1979 An authentication scheme
Answering Top-k Queries Using Views Gautam Das (Univ. of Texas), Dimitrios Gunopulos (Univ. of California Riverside), Nick Koudas (Univ. of Toronto), Dimitris.
UC/Garbled Searchable Symmetric Encryption Kaoru Kurosawa Ibaraki University, Japan.
By: Gang Zhou Computer Science Department University of Virginia 1 Medians and Beyond: New Aggregation Techniques for Sensor Networks CS851 Seminar Presentation.
Presented By Amarjit Datta
Location Privacy Protection for Location-based Services CS587x Lecture Department of Computer Science Iowa State University.
Searching Over Encrypted Data Charalampos Papamanthou ECE and UMIACS University of Maryland, College Park Research Supported By.
Chapter 9: Web Services and Databases Title: NiagaraCQ: A Scalable Continuous Query System for Internet Databases Authors: Jianjun Chen, David J. DeWitt,
Secure Data Outsourcing
Yang, et al. Differentially Private Data Publication and Analysis. Tutorial at SIGMOD’12 Part 4: Data Dependent Query Processing Methods Yin “David” Yang.
Keyword search on encrypted data. Keyword search problem  Linux utility: grep  Information retrieval Basic operation Advanced operations – relevance.
All Your Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption Yupeng Zhang, Jonathan Katz, Charalampos Papamanthou University.
Rethinking Choices for Multi-dimensional Point Indexing You Jung Kim and Jignesh M. Patel University of Michigan.
IIIT Hyderabad Private Outlier Detection and Content based Encrypted Search Nisarg Raval MS by Research, CSE Advisors : Prof. C. V. Jawahar & Dr. Kannan.
All Your Queries are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption Yupeng Zhang, Jonathan Katz, Charalampos Papamanthou University.
Dense-Region Based Compact Data Cube
Data Security and Privacy Keke Chen
Searchable Encryption in Cloud
Efficient Multi-User Indexing for Secure Keyword Search
Privacy Preserving Subgraph Matching on Large Graphs in Cloud
Oblivious Parallel RAM: Improved Efficiency and Generic Constructions
Database Management System
Hybrid Cloud Architecture for Software-as-a-Service Provider to Achieve Higher Privacy and Decrease Securiity Concerns about Cloud Computing P. Reinhold.
Practical and Secure Nearest Neighbor Search on Encrypted Large-Scale Data Source : IEEE INFOCOM IEEE International Conference on Computer Communications,
Privacy Preserving Subgraph Matching on Large Graphs in Cloud
Database Management Systems (CS 564)
Fast Searchable Encryption with Tunable Locality
Cloud Computing By P.Mahesh
Oblivious RAM: A Dissection and Experimental Evaluation
based on slides by Debra Cook
Using cryptography in databases and web applications
Chapter 15 QUERY EXECUTION.
Spatio-temporal Pattern Queries
Privacy Preserving Subgraph Matching on Large Graphs in Cloud
Verifiable Oblivious Storage
A Privacy-Preserving Index for Range Queries
Ch 4. The Evolution of Analytic Scalability
Cloud Security 李芮,蒋希坤,崔男 2018年4月.
University of Maryland
DATABASE HISTOGRAMS E0 261 Jayant Haritsa
IBM C IBM Big Data Engineer. You want to train yourself to do better in exam or you want to test your preparation in either situation Dumpspedia’s.
A Privacy – Preserving Index
Path Oram An Extremely Simple Oblivious RAM Protocol
Efficient Aggregation over Objects with Extent
Multiplicative data perturbation (2)
CRYP-F02 Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection Peter Scholl (University of Bristol) Michele Orrù (ENS Paris)
Presentation transcript:

Practical Private Range Search Revisited Ioannis Demertzis* University of Maryland yannis@umd.edu Stavros Papadopoulos Intel Labs & MIT stavrosp@csail.mit.edu Odysseas Papapetrou* EPFL, Lausanne, Switzerland odysseas.papapetrou@epfl.ch Antonios Deligiannakis Technical University of Crete adeli@softnet.tuc.gr Minos Garofalakis Technical University of Crete minos@softnet.tuc.gr *Work performed while the author was at the Technical University of Crete

Cloud Computing Pros: Near infinite scalability for big data analytic Easy and ubiquitous access on solid data Cost reduction with the use of shared infrastructure + Affordable for small and medium businesses Cons: - Serious security and privacy concerns regarding outsourcing and querying on private company or personal data Solution: Privacy Preserving Querying 2

IDEAL SOLUTION Privacy Preserving Querying Encrypt(DB) Client ? Encrypted Database Later: Encrypted(query) Untrusted Cloud Encrypted(results) Client

Solutions for Encrypted Search Efficiency Security High Low CryptDB CipherBase MONOMI Google BigQuery Microsoft SQL 2016 Always Encrypted … PPE Secure & Efficient OPE DET SSE Efficient ORAM Func/Pred Enc Secure FHE Not all schemes are explained (Feel free to ask me during the poster session!!)

No Practical and Secure solution! Why? Practical Private Range Search? No Practical and Secure solution! Our Contribution: Range Searchable Symmetric Encryption (RSSE) schemes 6

Related Work – Private Range Search Hacigumus et al. (2002) Hore et al. (2004, 2012) Efficiency Security High Low OPE DET PPE FHE Secure & Efficient RSSE ? Popa et al. (2013) Kerschbaum et al. (2014) Ostrovsky et. al (1990) Goldreich et. al (1996) Stefanov et al. (2011,2013, 2013) Efficient Li et al. (2015) ORAM Func/Pred Enc Gentry et al. 2010 Boneh et al. (2007) Shi et al. (2007) Lu et al. (2012) Secure Not all schemes are explained (Feel free to ask me during the poster session!!)

What is Searchable Symmetric Encryption? Leakage is the amount of information that the untrusted cloud learns Untrusted Cloud Client ? search query: keyword

Searchable Symmetric Encryption (SSE) schemes Client Untrusted Cloud k1 F1 F4 F2 k2 F3 F6 F4 F2 k3 F5 F1 F1 F2 F3 F4 F5 F6

Searchable Symmetric Encryption (SSE) schemes Client Untrusted Cloud k1 F1 F4 F2 k2 F3 F6 F4 F2 k3 F5 F1 F1 F2 F3 F4 F5 F6

Searchable Symmetric Encryption (SSE) schemes Client Untrusted Cloud L1 leakage: total leakage prior to query execution e.g. size of each encrypted file, size of encrypted index k1 F1 F4 F2 k2 F3 F6 F4 F2 k3 F5 F1 F1 F2 F3 F4 F5 F6

Searchable Symmetric Encryption (SSE) schemes Client Search pattern: whether a search query is repeated L2 leakage (leakage during query execution) Untrusted Cloud token k1 k1 F1 F4 F2 k2 F3 F6 F4 F2 k3 F5 F1 F1 F2 F3 F4 F5 F6 Access pattern: encrypted document ids and files that satisfy the search query

Security Game Real Scheme Simulator L1 ( Adversary ) Enc ( ) + Enc( ) &^*@h@&*^H4&*24 w1 | L2( w1 ) w1 Adversary token1 ^&*daUY@#* … … wN | L2( wN) wN tokenN &k*&()#&*@ 13

Trivial Solution 1 - Quadratic Approach Main idea: Replicate each tuple to all possible ranges it belongs to (For domain [0,m]  O(m2) possible ranges) Untrusted Cloud Client SELECT * FROM TABLE as T WHERE T.SALARY ≥ 2K and T.SALARY ≤ 3K 1 2 3 F1 F4 F2 F3 F6 F5 2-3 1-2 F1 F4 F2 F3 F6 2-3 F3 F6 F4 F2 F5 F1 1-3 F5 F1 F4 F2 F3 F6 Optimal Security - O(1) Query Size - O(r) Search Time - O(nm2) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Trivial Solution 2 – Linear Approach Client Main idea: Transform the range queries to point queries Untrusted Cloud SELECT * FROM TABLE as T WHERE T.SALARY ≥ 1K and T.SALARY ≤ 8K 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 F1 F4 F2 F6 F3 F5 Weaker Security - O(R) Query Size – O(R+r) Search Time - O(n) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Linear Approach (BRC-URC) Client Main idea: Use Delegatable-PRFs (DPRFs) Kiayas et al.CCS’13 Untrusted Cloud SELECT * FROM TABLE as T WHERE T.SALARY ≥ 1K and T.SALARY ≤ 8K a a b c d e f g 1 2 3 4 5 6 7 8 F1 F4 F2 F6 F3 F5 Weaker Security - O(logR) Query Size - O(logR+r) Search Time - O(n) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Best Range Cover Approach Client Main idea: Increase the space by replicating each tuple to the dyadic intervals in which it belongs (xlogm) Untrusted Cloud F2 F4 F1 F6 F3 F5 1-8 F1 F4 F2 1-4 F5 F3 F6 5-8 F3 F5 F1 F4 F2 1-2 3-4 F6 5-6 7-8 1 2 3 4 5 6 7 8 F1 F4 F2 F6 F5 F3 Intermediate Security - O(logR) Query Size - O(logR+r) Search Time - O(nlogm) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Best Range Cover Approach Client Main idea: Answer the queries with the minimum number of nodes which cover the range Untrusted Cloud 1-4 BRC(1,4) = 1-8 BRC(2,5) = 2 3-4 5 1-4 5-8 1-2 3-4 5-6 7-8 Equal size ranges have tokens of unequal size 1 2 3 4 5 6 7 8 Complex tokens have a specific structure Intermediate Security - O(logR) Query Size - O(logR+r) Search Time - O(nlogm) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Uniform Range Cover Approach Client Main idea: Answer all the queries with the same size with the same number of tokens Untrusted Cloud 1 2 3-4 URC(1,4) = 1-8 URC(2,5) = 2 3-4 5 1-4 5-8 1-2 3-4 5-6 7-8 Equal size ranges have tokens of unequal size 1 2 3 4 5 6 7 8 Complex tokens have a specific structure Solved by Logarithmic-SRC/Logarithmic SRCi Intermediate Security - O(logR) Query Size - O(logR+r) Search Time - O(nlogm) Space – No False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Single Range Cover Approach Client Main idea: Answer all the queries with one token Untrusted Cloud SRC(4,5) = 1-8 1-8 O(n) False Positives 1-4 5-8 1-2 3-4 5-6 7-8 1 2 3 4 5 6 7 8 False Positives Actual Answer False Positives Optimal Security – O(1) Query Size - O(n) Search Time - O(nlogm) Space – O(n) False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Single Range Cover Approach Client Main idea: Augment the tree structure with extra nodes without increasing asymptotically the space Untrusted Cloud SRC(4,5) = 4-5 1-8 O(range) False Positives values 1-4 3-6 5-8 All the tuples have value = 1 1-4 SRC(2,4) = 2-3 4-5 6-7 1-2 3-4 5-6 7-8 O(n) False Positives 1 2 3 4 5 6 7 8 If we have only one value per leaf then O(result size) False Positives False Positive value Flatten the distribution (Assign one value per leaf) Actual Values Logarithmic SRCi Optimal Security - O(1) Query Size - O(n) Search Time - O(nlogm) Space – O(n) False Positives n: dataset size, r: result size, m: domain size , R: query range size

Logarithmic-Single Range Cover-i Approach Client Main idea: Augment the tree structure with extra nodes without increasing asymptotically the space Untrusted Cloud SRC(4,5) = 4-5 1-8 O(range) False Positives values 1-4 3-6 5-8 All the tuples have value = 1 1-4 SRC(2,4) = 2-3 4-5 6-7 1-2 3-4 5-6 7-8 O(n) False Positives 1 2 3 4 5 6 7 8 If we have only one value per leaf then O(result size) False Positives Flatten the distribution (Assign one value per leaf) Logarithmic SRCi Optimal Security - O(1) Query Size – O(R+r) Search Time - O(nlogm) Space – O(R+r) False Positives n: dataset size, r: result size, m: domain size , R: query range size

? Thank you!!! Questions??? Secure & Efficient Efficient Secure High Efficiency Security High Low OPE DET PPE FHE ? Secure & Efficient Efficient ORAM Func/Pred Enc Secure We will present the experimental evaluation in the Poster Session