Photonic crystals and related nanostructures for solar light management Christian Seassal, Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim.

Slides:



Advertisements
Similar presentations
Optical near-field control of nanoresonators Near Field Optics Group OMR ICB - Université de Bourgogne Benoit Cluzel, Loïc.
Advertisements

1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Optical Modeling of a-Si:H Thin Film Solar Cells with Rough Interfaces Speaker : Hsiao-Wei Liu 08/18/2010 Wed.
Solar Cells as Light Emitters: The Key to Record Efficiencies and Approaching the Shockley-Queiser Limits OSA FiO 2013 / LS XXIX Owen Miller*: Post-doc,
Mikhail Rybin Euler School March-April 2004 Saint Petersburg State University, Ioffe Physico-Technical Institute Photonic Band Gap Structures.
Shaping the color Optical property of photonic crystals Shine.
A New Design Tool for Nanoplasmonic Solar Cells using 3D Full Wave Optical Simulation with 1D Device Transport Models Liming Ji* and Vasundara V. Varadan.
Applications of Photovoltaic Technologies. 2 Solar cell structure How a solar cell should look like ?  It depends on the function it should perform,
Laser-Assisted Direct Imprint (LADI) Technology S. Y. Chou, C. Keimel, and J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature, 417.
Third Generation Solar cells
Properties of Photonic and Plasmonic Resonance Devices Jae Woong Yoon, Kyu Jin Lee, Manoj Niraula, Mohammad Shyiq Amin, and Robert Magnusson Dept. of Electrical.
Solar Power Program Clara Paola Murcia S. BS in Electrical Engineering (Universidad de Los Andes) Concentration in Power Systems / Minor in BA Semiconductor.
ELEG 620 Solar Electric Power Systems February 25, 2010 Solar Electric Power Systems ELEG 620 Electrical and Computer Engineering University of Delaware.
Cell and module construction. Photovoltaic effect and basic solar cell parameters To obtain a potential difference that may be used as a source of electrical.
Solar Cell Operation Key aim is to generate power by:
Applications of Photovoltaic Technologies
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Techniques for achieving >20% conversion efficiency Si-based solar cells Presenter: TSUI, Kwong Hoi.
May 25, 2007Bilkent University, Physics Department1 Optical Design of Waveguides for Operation in the Visible and Infrared Mustafa Yorulmaz Bilkent University,
Energy of the Future: Solar Cells Rade Kuljic 1, Hyeson Jung 1, Ayan Kar 1, Michael A. Stroscio 1,2 and Mitra Dutta 1,3 1 Department of Electrical and.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
LBNL 9/15/06 Limiting factors in solar cell efficiency - how do they apply on the nano-scale ? D.G. Ast Cornell University.
J-V Characteristics Optical Properties Above-11%-Efficiency Organic–Inorganic Hybrid Solar Cells with Omnidirectional Harvesting Characteristics by Employing.
VCI2010 Photonic Crystals: A Novel Approach to Enhance the Light Output of Scintillation Based Detectors 11/19/2015 Arno KNAPITSCH a, Etiennette AUFFRAY.
Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Advanced design rules for Nanophotonic thin film solar cells Sonia Messadi, H. Ding, G. Gomard, X. Meng, R. Peretti, L. Lalouat, E. Drouard, F. Mandorlo,
Nanophotonic light trapping for high efficiency solar cells Kylie Catchpole Centre for Sustainable Energy Systems, Research School of Engineering Australian.
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
Meeting 2014-October WP1 INL : Simulation for Laser Interference Lithography sample (PI32) -2. Possible alternative: patterning of the front electrode.
LPICM slides for WP3 Wanghua Chen and Pere Roca i Cabarrocas
2. Design Determine grating coupler period from theory: Determine grating coupler period from theory: Determine photonic crystal lattice type and dimensions.
Part V. Solar Cells Introduction Basic Operation Mechanism
Physics Department, University of Pavia, Italy Lucio Claudio Andreani, Angelo Bozzola, Piotr.
A brief overview of Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater,
Controlled fabrication and optical properties of one-dimensional SiGe nanostructures Zilong Wu, Hui Lei, Zhenyang Zhong Introduction Controlled Si and.
Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method Dalton Chaffee, Xufeng Wang, and Peter Bermel Purdue University.
NANO SCIENCE IN SOLAR ENERGY
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Photon recycling processes in a single junction solar cell on a substrate illustrated.
My research topics related to surface plasmon
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the dye sensitized solar cell (DSSC) design consists of multilayer.
Third Generation Solar cells
(a)luminescence (LED) (b)optical amplifiers (c)laser diodes.
LIGHT BACKSCATTERING ANALYSIS of Textured Silicon SAMPLES
Symposium C2.2: Interface Design and Modelling
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
Why MOCVD and GaAs nanowires?
Nanodome Solar Cells with Efficient Light Management and Self-Cleaning
High Q-factor Photonic Crystal Cavities on Transparent Polymers
Photonic Bandgap (PBG) Concept
Ultra broadband plasmonic absorbers for terahertz waves
Comparison and characterization of different tunnel layers, suitable for passivated contact formation Gordon LING(1), Zheng XIN(1), Cangming KE(1), Kitz.
Photonic crystals for light trapping in solar cells
Silicon nanowire solar cells: from nanostructures to devices
Meeting 指導教授:李明倫 學生:劉書巖.
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Optoelectronic Devices
Fabrication of GaAs nanowires for solar cell devices
J. Shawn Addington David T. Wagner
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Improving Solar Cell Efficiencies through Periodicity
An optical technique for measuring surface recombination velocity
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Thermal Photonics and Energy Applications
Interface Engineering
Presentation transcript:

Photonic crystals and related nanostructures for solar light management Christian Seassal, Loïc Lalouat, He Ding, Romain Champory, Ngoc Vu Hoang, Abdelmounaim Harouri, Hai-Son Nguyen, Régis Orobtchouk, Alain Fave, Fabien Mandorlo, Emmanuel Drouard INL, Institut des Nanotechnologies de Lyon, UMR 5270 CNRS-Université de Lyon, Ecole Centrale de Lyon, INSA-Lyon, France In collaboration with: Imec (V. Depauw et al), LPICM (P. Roca i Cabarrocas et al), Obducat (K. Lee et al), LPN (S. Collin et al), ILM (A. Pereira et al), U.Namur (O. Deparis et al)

Efficiency limitations Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque Efficiency limitations Si solar cell Thin film solar cell Which limitations? In-coupling losses R0? AR layer

Efficiency limitations Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque Efficiency limitations Si solar cell Thin film solar cell Which limitations? In-coupling losses EQE/absorption limited in red/IR Rough surface A100%?

Efficiency limitations Context: Bulk solar cells, thin film solar cells L’optique pour le photovoltaïque Efficiency limitations Si solar cell Thin film solar cell Which limitations? In-coupling losses EQE/absorption limited in red/IR Thermalization in the UV/blue No absorption below Eg Third Generation Photovoltaics, Vasilis Fthenakis Ed.

In-coupling and absorption control Efficiency enhancement in PV devices L’optique pour le photovoltaïque In-coupling and absorption control Using the photonic toolbox: Samuelson U. Lund, 2015 wires/holes/ cones/pyramids Bermel MIT, 2007 Metal/dielectric F. J. Haug EPFL, JPV 2015 guided modes / localized modes Boriskina MIT, 2015

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

Antireflecting structure Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Top junction Indermediate reflector Solar cells Bottom junction Back electrode/reflector

Solar cells using UV, IR photons How can nanophotonics outperform solar cells? L’optique pour le photovoltaïque Light traping into resonant modes Increased absorption Light localisation Higher absorption, lower pin thickness Radiative losses trapping (direct bandgap cells) Increased Voc Control of absorption/emission of light, wavelength conversion Solar cells using UV, IR photons Increased Jsc Increased angular acceptance

Efficiency enhancement in PV devices L’optique pour le photovoltaïque In-coupling and absorption control Up to which limit? « Yablonovitch » limit, 4n² IEEE Trans. Electron. Dev. 1984 weakly absorbing medium Lambertian limit, below 4n² M.A. Green weakly and strongly absorbing media

In-coupling and absorption control Efficiency enhancement in PV devices L’optique pour le photovoltaïque In-coupling and absorption control Up to which limit? Using the photonic toolbox

Efficiency enhancement in PV devices L’optique pour le photovoltaïque Key questions: Which are the best (nano)structures for PV? Optical, electrical properties How to realize these at low cost? What is the most appropriate absorber thickness Real performances of photonized solar cells

L’optique pour le photovoltaïque Outline L’optique pour le photovoltaïque Introduction: nanophotonics and solar energy conversion Photonic crystals and solar cells Physics and modal engineering, case of a-Si:H Thin c-Si solar cells assisted by PhCs Multi-periodic/complex absorbers Absorption enhancement with pseudo-disordered nanopatterns Design rules for solar cells including complex patterns PhCs for wavelength conversion Rare earth doped photonic metastructures for down shifting Conclusion and outlook

L’optique pour le photovoltaïque Outline L’optique pour le photovoltaïque Introduction: nanophotonics and solar energy conversion Photonic crystals and solar cells Physics and modal engineering, case of a-Si:H Thin c-Si solar cells assisted by PhCs Multi-periodic/complex absorbers Absorption enhancement with pseudo-disordered nanopatterns Design rules for solar cells including complex patterns PhCs for wavelength conversion Rare earth doped photonic metastructures for down shifting Conclusion and outlook

2-Photonic crystal absorbers Case of an ultra-thin a-Si:H layer, 100nm RCWA simulation: absorption spectrum PhC -a=380nm -D/a=0.62 Flat reference Y. Park, Opt. Express 17, 14321 (2009) G. Gomard et al., J. Appl. Phys. 108, 123102 (2010)

2-Photonic crystal absorbers Case of an ultra-thin a-Si:H layer, 100nm which mechanisms control the absorption? For>550nm >80% PhC Flat reference PBG PBG R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)

2-Photonic crystal absorbers Case of an ultra-thin a-Si:H layer, 100nm which mechanisms control the absorption? For>550nm SEM SNOM (weakly) self-localized slow light mode

2-Photonic crystal absorbers Case of an ultra-thin a-Si:H layer, 100nm which mechanisms control the absorption? The resonance = mediator Q0=wt0 The absorbing medium Abs. coef.= For>550nm Absorption peaks due to Bloch mode resonances Critical coupling of a single mode: 50% absorption Additional absorption peaks = Multimode structure  Abs. up to 100% Critical coupling conditions or For a-Si:H : a=1000cm-1  Q0=10-100 Y. Park, Opt. Express 17, 14321 (2009) R. Peretti et al., J. Appl. Phys. 111, 123114 (2012)

2-Photonic crystal absorbers Case of a 100nm thick a-Si:H layer which mechanisms control the absorption? For 450nm No absorption peak but... strong absorption increase PhC Flat reference

2-Photonic crystal absorbers Investigating the physics of absorbing PCs in the blue l-range SNOM experiments Back-side illumination Front-side collection using a SNOM tip FDTD simulations Incident light coupled to vertically guided “channeling modes” Ack.: R. Artinyan, S. Callard G. Gomard et al., APL 104, 051119 (2014)

2-Photonic crystal absorbers Investigating the physics of absorbing PCs in the blue l-range FDTD simulations 70-85% of incident light coupled “channeling modes”, and absorbed in a-Si:H, but… etched sidewalls G. Gomard et al., APL 104, 051119 (2014)

2-Photonic crystals and solar cells Case of a 1µm thick c-Si solar cell stack With periodic nano-pyramids (Λ) Ful parameters scan: (os) 1. Period (Λ) 2. ff=a / Λ 3. Thickness of optical spacer (os)

2-Photonic crystals and solar cells Case of a 1µm thick c-Si solar cell stack 23.59 mA/cm² Period (Λ): 800 nm, ff: 0.85 Optical spacer (os): 110nm Anti-Reflection Effect More modes: e.g. SBM 11.52 mA/cm² 105% increase

Collab.: imec, U. Namur, LPICM, Obducat 2-Photonic crystals and solar cells Nanopattern shape optimization: optical assessment Collab.: imec, U. Namur, LPICM, Obducat

Collab.: imec, U. Namur, LPICM, Obducat 2-Photonic crystals and solar cells Optimized nanopattern: optical assessment, experiments 1µm thick c-Si “Epifree silicon” Over the Lambertian limit for l>500nm Over the 4n² limit for specific resonances Collab.: imec, U. Namur, LPICM, Obducat

Collab.: imec, U. Namur, LPICM, Obducat 2-Photonic crystals and solar cells Nanopattern shape optimization: electrical properties 280-µm-thick FZ p-type wafers, patterned by Nanoimprint, passivated with a-Si:H Carrier lifetime assessment by Quasi Steady-State PhotoConductance Flat wafer TMAH RIE shallow RIE deep ICP 2200 µs 930 µs 780 µs 170 µs 44 µs Lifetimes affected by: The etching process: wet better than dry Surface area enhancement + conformality of passivating layer Collab.: imec, U. Namur, LPICM, Obducat

Collab.: imec, U. Namur, LPICM, Obducat 2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 4.5% Collab.: imec, U. Namur, LPICM, Obducat

2-Photonic crystals and solar cells Solar cells, 1µm thick c-Si with periodic nanopatterns 6.5% efficiency, 18mA/cm² 4.5% Strong Jsc increase due to photonic crystals Still room for improvement to reach simulated Jsc : parasitic absorption

Collab.: LPICM, LPN, Total 2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total Nanopatterning of PECVD c-Si is feasible Nano Lett 2016, to appear

Collab.: LPICM, LPN, Total 2-Photonic crystals and solar cells Using c-Si prepared by PECVD (LPICM) low cost low T° scalable Collab.: LPICM, LPN, Total Still limited efficiency due to absorption in front and back contacts, and limited absorption in IR Nano Lett 2016, to appear

2-Photonic crystals and solar cells How to further increase the efficiency/get closer to the limits? K.X. Wang Stanford, Nano Lett. 2012 X.Q. Meng U. Lyon, Opt. Express 2012 U.W. Paetzold, Jülich, APL 2014 S. Noda U. Kyoto, ACS Phot 2014 Dual gratings Periodic  controlled disorder  disorder

L’optique pour le photovoltaïque Outline L’optique pour le photovoltaïque Introduction: nanophotonics and solar energy conversion Photonic crystals and solar cells Physics and modal engineering, case of a-Si:H Thin c-Si solar cells assisted by PhCs Multi-periodic/complex absorbers Absorption enhancement with pseudo-disordered nanopatterns Design rules for solar cells including complex patterns PhCs for wavelength conversion Rare earth doped photonic metastructures for down shifting Conclusion and outlook

3-Multi-periodic/complex absorbers What can we expect from disorder? SEM SNOM (weakly) self-localized slow light mode Strongly localized light High confinement in real space. Impact in a solar cell?

3-Multi-periodic/complex absorbers Increasing the absorption bandwidth in the low absorption domain Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice. L. Lalouat et al., SOLMAT (2016) H. Ding et al., Opt. Express 24, A650 (2016)

3-Multi-periodic/complex absorbers Increasing the absorption bandwidth in the low absorption domain Supercell lattice: 3x3 Depth (h) cSi Metal Shift Pseudo-disordered pattern = supercell of randomly located holes, periodically repeated in a square lattice.

3-Multi-periodic/complex PhC absorbers Increasing the absorption bandwidth in the low absorption domain Experiments: 3x3 supercell pseudo-disordered structure (EBL+RIE) New peaks Broaden peaks Smaller amplitude peaks

3-Multi-periodic/complex PhC absorbers Increasing the absorption bandwidth in the low absorption domain Square lattice Pseudo-disorder Relative increase 2.1% Experimental 2.7% Theoretical Shift !! Metrics !!  over 2% relative increase, in the best cases

3-Multi-periodic/complex PhC absorbers Design rules: real space analysis 2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 holes are evenly distributed high !! Metrics !! Jsc (mA/cm²) low Clusters of holes appeared

3-Multi-periodic/complex PhC absorbers Design rules: real space analysis 2µm thick c-Si H. Ding et al. Opt. Express 2016 2 x 2 3 x 3 4 x 4 Efficient design of optimized light-trapping structures !! Metrics !!

L’optique pour le photovoltaïque Outline L’optique pour le photovoltaïque Introduction: nanophotonics and solar energy conversion Photonic crystals and solar cells Physics and modal engineering, case of a-Si:H Thin c-Si solar cells assisted by PhCs Multi-periodic/complex absorbers Absorption enhancement with pseudo-disordered nanopatterns Design rules for solar cells including complex patterns PhCs for wavelength conversion Rare earth doped photonic metastructures for down shifting Conclusion and outlook

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector

4-PhC for wavelength conversion Rare-earth doped photonic meta-structure Rare earth doped layer e.g. Eu-doped Y2O3 SiNx Photonic crystal LDS Layer UV photons (~ 400nm) Visible photons (611 nm) Collab.: B. Moine, A. Pillonnet, A. Pereira

4-PhC for wavelength conversion Rare-earth doped photonic meta-structure, luminescence measurements with an integrating sphere L=250nm and r=80nm Collab.: N.-V. Hoang, B. Moine, A. Pillonnet, A. Pereira Strong Enhancement in Eu3+ emission → Expected improvement of down shifting efficiency N.-V. Hoang et al. (in preparation)

4-PhC for wavelength conversion Photonic resonances at absorption wavelengths: Measured Transmittance RCWA Simulation Histogram from SEM images (1mm2) Bloch modes resonances Clear evidence of the resonant modes Transmittance remains high at longer wavelength N.-V. Hoang et al. (in preparation)

4-PhC for wavelength conversion Photonic modes at emission wavelengths: Excitation (394 nm) q Emission (611 nm) Clear evidence of the resonant modes Oblique emission 611 nm N.-V. Hoang et al. (in preparation)

5-Conclusions, outlook In-plane Bloch modes and vertical “channeling” modes PhC absorbers Mediators to control incident light capture and absorption  Enables to increase Abs/JSC by 100% Photonic crystal solar cells  Dedicated processes developped: nanopatterning, passivation Positive impact of controlled perturbations  Experimental assessment of the integrated absorption increase in a- Si:H and c-Si based stacks. Strong enhancement of down shifting thanks to PhCs  x50, expected PV conversion efficiency Still many work to do in photonics:  Towards Jsc>30mA/cm² with a Si layer of less than 10µm  Develop advanced light trapping for other families of solar cells.  Other light-matter interaction effects, useful for PV (down-conversion…)

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure RE-doped “layer” (AR+converter) Absorber (Si in this talk) Solar cells Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics U. Delaware INL INL GIST Wavelength-selective intermediate mirror High efficiency absorber Resonant wavelength converter Antireflecting structure AR “layer” Top junction Indermediate reflector Solar cells Bottom junction Back electrode/reflector

Periodic photonic structures for energy harvesting L’optique pour le photovoltaïque High index contrast periodic structures: a platform for Photovoltaics Perovskite or III-V, or… AR “layer” Top junction Indermediate reflector Bottom junction Back electrode/reflector Silicon or……

Cellules photovoltaïques - introduction Acknowledgements Cellules photovoltaïques - introduction The NANOLYON team EU’s 7th program Grant N°309127 PROGELEC http://nathisol.ec-lyon.fr

3-Multi-periodic/complex absorbers Better angle acceptance? Simulation: Square lattice  3x3 pesudodisorder Higher absorption, mostly close to normal incidence Better stability Current density (mA/cm²) Lambda: 700-1100nm

3-Multi-periodic/complex PhC absorbers Increasing the absorption bandwidth in c-Si cSi TCO Metal P r x40 realizations of the disorder Optimized RCWA simulation: Max achievable Jsc (mA/cm²) c-Si thickness Optimized Square lattice Best pseudo-disordered Size of the best supercell / square lattice Rel. Jsc increase 1µm 19.96 20.02 2x2 +0.3% 2µm 23.71 24.20 +2.1% 4µm 27.46 27.95 3x3 +1.8% 8µm 30.69 31.28 +1.9% 2% relative increase, in the best cases

Record efficiency for ultrathin nanopatterned epifree solar cell 2-Photonic crystals and solar cells Record efficiency for ultrathin nanopatterned epifree solar cell 9.6% Jsc (mA)

Record efficiency for ultrathin nanopatterned epifree solar cell 2-Photonic crystals and solar cells Record efficiency for ultrathin nanopatterned epifree solar cell 9.6%

3-Multi-periodic/complex PhC absorbers Design rules: reciprocal space analysis 2µm thick c-Si State of the art: Magn. of Fourier component  in-coupling:  magnitude of the Fourier components between 2p/L and 4p/L (LC. Andreani et al)  out-coupling:  magnitude of the Fourier components lower than 2p/l0 (T. Krauss et al) Present study: Both criteria are satisfied Small gain in Jsc but without extra cost H. Ding et al. Opt. Express 2016