Kendall/Hunt Publishing Company

Slides:



Advertisements
Similar presentations
Soil and Glass Analysis. 2 You will understand: The difference between physical and chemical properties. How glass can be used as evidence. How individual.
Advertisements

Glass. Common Types 1.Fused silica 2.Soda lime (soft) 3.Borosilicate Main component is silicon dioxide (SiO 2 ) which is more commonly referred to as.
Many solids are crystals A solid in which the atoms are arranged in a regular pattern Sodium chloride.
Trace Evidence Continued.... I. Glass Introduction A. = a common type of trace evidence B. Characteristics of glass 1. Common material in our environment.
Chapter 4 Glass.
Mrs. Svedstrup Glass and Soil Chapter An amorphous solid In pure form is made up of silicon and oxygen molecules (SiO 2 ) n No ordered structure.
Chapter 14 Glass “There is no den in the wide world to hide a rogue. Commit a crime and the earth is made of glass.” —Ralph Waldo Emerson.
Velocity of light in medium Velocity of light in vacuum R.I. = FACTS:
Answer these Q’s  What is glass made of?  How many types of glass can you name?  Name as many objects as you can that are composed of glass. How can.
Glass a “chip” off the old block. What is glass? Mixture of: –Sand –Soda –Lime –Other trace elements.
1. What types of forensic evidence do you think can be gathered from glass? 2. What types of forensic evidence do you think can be gathered from soil?
Forensic Glass Analysis. Characteristics of Glass Hard, amorphous solid Usually transparent Primarily composed of silica, with various amounts of elemental.
Glass analysis Distinguishing Glass Fragments. What is Glass? Glass is a is a hard, amorphous material made by melting sand, lime (also called calcium.
Glass Analysis Part 2 Mrs. Ashley.
Glass as Evidence. Unit Overview Most often the composition of glass is unique and therefore identifiable.Most often the composition of glass is unique.
Chapter 14 Glass “There is no den in the wide world to hide a rogue. Commit a crime and the earth is made of glass.” —Ralph Waldo Emerson.
Test Friday!!! FORENSIC ANALYSIS OF GLASS. GLASS…AN AMORPHOUS SOLID Physical Properties: hard, elastic, brittle, non- conductor of electricity, density,
Explain how glass is formed List some of the characteristics of glass
Vocabulary Concentric Fractures Radial Fractures Refractive Index
Glass. How Is Glass Used: Glass fragments can be used as evidence to help place a suspect at the scene of a crime. different kinds of glass have different.
Kendall/Hunt Publishing Company
Glass Evidence. Automobile Accidents Automobile Accidents – Windshield, head lamps Store Break-in Store Break-in – Window glass with trace evidence Suspect.
PHYSICAL PROPERTIES GLASS
Unit 2C Glass & Soil Evidence. Forensic Analysis of Glass Glass that is broken and shattered into fragments during the commission of a crime can be used.
What is the state of matter of glass at room temperature?
GLASS EVIDENCE Glass is considered microscopic evidence.
Glass Analysis and Fractures Pg
Glass Evidence Solving the Crime. Types of Glass.
GLASS AS EVIDENCE. CSI Glass and Light Glass as Evidence.
DECEMBER 19, 2012 EQ: HOW IS GLASS ANALYZED TO SOLVE CRIMES? WARM-UP: (Write the questions & answer the questions while watch the following the video.)
Glass as Evidence. Properties The composition of glass is unique and therefore identifiable. The composition of glass is unique and therefore identifiable.
Warm-Up After attending a gallery opening Slylock has his assistant speak to the gallery and tell them one painting is a fake. Why does Slylock Fox suspect.
PHYSICAL PROPERTIES: GLASS. Physical vs. Chemical Properties The forensic scientist must constantly determine those properties that impart distinguishing.
Forensic Glass Analysis HC. terview/csi-of-glass-and- light-2?autoredirect#what- are-the-different-kinds-of- glass-studied-in-csi.
PHYSICAL PROPERTIES: GLASS
Forensic Science: Fundamentals & Investigations, 2e Chapter 15 1 All rights Reserved Cengage/NGL/South-Western © 2016.
Forensic Analysis of Glass Dr. John Woolcock – IUP Dept. of Chemistry
Soil and Glass Analysis
Chapter 4 PHYSICAL PROPERTIES: GLASS AND SOIL
Explain how glass is formed List some of the characteristics of glass
Types of Glass Saferstein - Chapter 4.
Types of Fractures by Projectiles
What’s the Dirt on Glass?
Forensic Science Ms MacCormack
Glass and Light “There is no den in the wide world to hide a rogue. Commit a crime and the earth is made of glass.” —Ralph Waldo Emerson.
THE ANALYSIS OF GLASS.
Soil and Glass Analysis
Answer these Q’s What is glass made of?
All rights Reserved Cengage/NGL/South-Western © 2016.
All rights Reserved Cengage/NGL/South-Western © 2016.
Glass.
Properties and Analysis
NOVEMBER 15, 2013 EQ: What techniques are used in Forensic Science to analyze glass? You DO NOT need your composition books for the warm-up today. WARM-UP:
Unit 2C Glass & Soil Evidence
Chapter 14 Glass “There is no den in the wide world to hide a rogue. Commit a crime and the earth is made of glass.” —Ralph Waldo Emerson.
First of the Day…..
Glass Analysis and Fractures Pg
Glass as Evidence.
Explain how glass is formed List some of the characteristics of glass
Explain how glass is formed List some of the characteristics of glass
PHYSICAL PROPERTIES: GLASS
Glass Analysis and Fractures Pg
Glass & Soil Evidence.
Forensic Glass Analysis
Glass 2018.
Explain how glass is formed List some of the characteristics of glass
Soil and Glass Analysis
Warm Up Objective: Scientists will describe glass evidence by taking notes and analyzing the activity. What is the topic? What will you be doing? Why.
Glass Evidence.
PHYSICAL PROPERTIES GLASS
Presentation transcript:

Chapter 14 Glass “There is no den in the wide world to hide a rogue. Commit a crime and the earth is made of glass.” —Ralph Waldo Emerson

Kendall/Hunt Publishing Company Glass Analysis Students will learn: The difference between physical and chemical properties. How glass can be used as evidence. How individual evidence differs from class evidence. The nature of glass. How to use the properties of reflection, refraction, and refractive index to classify glass fragments. Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Glass Analysis Students will be able to: Make density measurements on very small particles. Use logic to reconstruct events. Use technology and mathematics to improve investigations and communications. Identify questions and concepts that guide scientific investigations. Kendall/Hunt Publishing Company

Characteristics of Glass Chapter 14 Characteristics of Glass Hard, amorphous solid Usually transparent Primarily composed of silica with various amounts of elemental oxides Brittle Exhibits conchoidal fracture Kendall/Hunt Publishing Company Kendall/Hunt

Kendall/Hunt Publishing Company Common Types Soda-lime—used in plate and window glass, glass containers, and electric light bulbs Soda-lead—fine table ware and art objects Borosilicate—heat resistant, like Pyrex Silica—used in chemical ware Tempered—used in side windows of cars Laminated—used in the windshield of most cars Kendall/Hunt Publishing Company

Physical Characteristics Density—mass divided by volume Refractive index (RI)—the measure of light bending due to a change in velocity when traveling from one medium to another Fractures Color Thickness Fluorescence Markings—striations, dimples, etc Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Density Type of Glass Density window 2.46-2.49 headlight 2.47-2.63 pyrex 2.23-2.36 lead glass 2.9-5.9 porcelain 2.3-2.5 Kendall/Hunt Publishing Company

Determination of Refractive Index Immersion method—lower fragments into liquids whose refractive index is different. Match point—when the refractive index of the glass is equal to that of the liquid Becke line—a halo-like shadow that appears around an object immersed in a liquid. It disappears when the refractive index of the liquid matches the refractive index of the glass fragment (the match point) Kendall/Hunt Publishing Company

Determination of Refractive Index The refractive index of a high boiling liquid, usually a silicone oil, changes with temperature This occurs in an apparatus called a hot stage which is attached to a microscope. Increasing the temperature allows the disappearance of the Becke line to be observed At match point, temperature is noted and refractive index of the liquid is read from a calibration chart Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company The Becke Line The Becke line is a “halo” that can be seen on the inside of the glass on the left, indicating that the glass has a higher refractive index than the liquid medium. The Becke line as seen on the right is outside of the glass, indicating just the opposite. Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Refractive Index Liquid RI Glass Water 1.333 Vitreous silica 1.458 Olive oil 1.467 Headlight 1.47-1.49 Glycerin 1.473 Window 1.51-1.52 Castor oil 1.82 Bottle Clove oil 1.543 Optical 1.52-1.53 Bromobenzene 1.560 Quartz 1.544-1.553 Bromoform 1.597 Lead 1.56-1.61 Cinnamon oil 1.619 Diamond 2.419 Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Fracture Patterns Radial fracture lines radiate out from the origin of the impact; they begin on the opposite side of the force Concentric fracture lines are circular lines around the point of impact; they begin on the same side as the force 3R rule—radial cracks form a right angle on the reverse side of the force. Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Sequencing A high velocity projectile always leaves a hole wider at the exit side of the glass. Cracks terminate at intersections with others. This can be used to determine the order that the fractures occurred. Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Chapter 14 Glass as Evidence Class characteristics; physical and chemical properties such as refractive index, density, color, chemical composition Individual characteristics; if the fragments can fit together like pieces of a puzzle, the source can be considered unique Kendall/Hunt Publishing Company Kendall/Hunt

Considerations for Collection The collector must consider that fragments within a questioned sample may have multiple origins. If possible, the collector should attempt an initial separation based on physical properties. The collector must consider the possibility there may be a physical match to a known sample (e.g., a piece of glass to a fractured vehicle headlamp). When an attempt to make a physical match is made at the site of collection, the collector should take precautions to avoid mixing of the known and questioned samples. Any glass samples collected should be documented, marked (if necessary), packaged, and labeled. —Forensic Science Communications Kendall/Hunt Publishing Company

Kendall/Hunt Publishing Company Collecting the Sample The glass sample should consist of the largest amount that can be practically collected from each broken object and packaged separately. The sample should be removed from the structure (e.g., window frame, light assembly). The inside and outside surfaces of the known sample should be labeled if a determination of direction of breakage or reconstruction of the pane is desired. When multiple broken glass sources are identified, it is necessary to sample all sources. A sample should be collected from various locations throughout the broken portion of the object in order to be as representative as possible. The sample should be collected with consideration being given to the presence of other types of evidence on that sample (e.g., fibers, blood). —Forensic Science Communications Kendall/Hunt Publishing Company