LTE-A : 4G Wireless Broadband Networks

Slides:



Advertisements
Similar presentations
GSC: Standardization Advancing Global Communications Evolution of TD-SCDMA China Communications Standards Association (CCSA) Chicago, May 29th to 2nd June,
Advertisements

1 3GPP LTE presentation 3GPP TSG RAN Chairman 3GPP TSG RAN Chairman 3GPP LTE presentation Kyoto May 22rd 2007.
LTE-A Carrier Aggregation
Qi Wang July 3rd, Mobile Communication Seminar.
Wimax (802.16) A Road to Mobile Life.
Aida BotonjićTieto1 LTE Aida Botonjić. Aida BotonjićTieto2 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High.
Overview.  UMTS (Universal Mobile Telecommunication System) the third generation mobile communication systems.
IEEE Std Technique Overview nmgmt.cs.nchu.edu.tw 系統暨網路管理實驗室 Systems & Network Management Lab Reporter :黃文帥 2007/09/18.
Performance Evaluation of WiMax Systems Metehan Dikmen and Mehmet Şafak Hacettepe University Dept. of Electrical and Electronics Engineering Beytepe,
An Introduction of 3GPP Long Term Evolution (LTE)
Views on IEEE m Frame Structure Document Number: C80216m-07_354 Date Submitted: November 12, 2007 Source: Sassan Ahmadi
به نام خدا An Overview of Next Generation of Mobile WiMAX Technology (802.16m).:. Class seminar.:. Lecturer: Mohammad Aliasgari Custom Implementation of.
IEEE WirelessMAN For Broadband Wireless Metropolitan Area Networks.
Design of Multi-RAT Virtualization Architectures in LTE-Advanced Wireless Network Location: 國立暨南國際大學電機系 Source: ICIC Express Letters, vol. 8, no. 5, May.
WiMAX/LTE : 4G Wireless Broadband Networks 1 中山大學 電機系 許蒼嶺教授.
IEEE (Wire less MAN) Name: Ehsan Rohani
Mobile Broadband Wireless Access (MBWA) IEEE Standard
Long Term Evolution Protocols
Mobile Broadband Evolving to OFDM + MIMO
WiMAX/LTE : 4G Wireless Broadband Networks 1 中山大學 電機系 許蒼嶺教授.
Features of Long Term Evolution (LTE)
第四代行動通訊系統 (4G)-- Long Term Evolution Advanced (LTE Advanced)
By Chaitanya Sarma & E.Prashant
LONG TERM EVOLUTION DANISH HASRAT (091042) DEEPAK SINGH (091043) GAURAV THAWANI (091052) NILESH SINGH (091079)
WiMAX (IEEE ) : Wireless Broadband Networks 1.
LTE Introduction Tzu-chin Liu 15th March 2012.
 First generation systems utilized frequency axis to separate users into different channels  Second generation systems added time axis to increase number.
1 OFDM based Applications DAB-OFDM  Digital Audio Broadcasting DVD-OFDM  Digital Video Broadcasting ADSL-OFDM  Asynchronous Digital Subscriber Line.
Technology training (Session 2)
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 EPC核心網路系統設計 課程單元 04:LTE 通訊與協定 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學 電腦與通訊工程系)
WIMAX AND LTE.
Bandwidth Utilization: Multiplexing and Spreading
Δίκτυo Long Term Evolution (LTE)
TLEN 5830-AWL Advanced Wireless Lab
802.16e PHY Basic concepts By Timor Israeli.
LTE Long Term Evolution
Long Term Evolution (LTE) and System Architecture Evolution (SAE)
5G MOBILE TECHNOLOGY TECHNICAL SEMINAR
244-6: Higher Generation Wireless Techniques and Networks
GSM Training for Professionals
4G-WIRELESS NETWORKS PREPARED BY: PARTH LATHIGARA(07BEC037)
WiMAX 1EEE Protocol Stack
Cellular Wireless Networks
Shamir Stein Ackerman Elad Lifshitz Timor Israeli
LTE Long Term Evolution
Coding Methods in CDMA.
Long Term Evolution Beyond 3G.
3GPP TSG RAN Meeting #67 Shanghai, China, 9 – 12 March, 2015
Proposals for LTE-Advanced Technologies
Long Term Evolution (LTE)
4G and 5G: Present and Future of Mobile Network
EXECUTIVE SUMMARY CA combinations are divided into intra-band (contiguous and non-contiguous) and inter-band. Aggregated carriers can be adjacent or non-adjacent.
An Overview of ax Greg Kamer – Consulting Systems Engineer.
WIRELESS AND MOBILE COMMUNICATION
EECS 228a, Spring 2006 Shyam Parekh
תקשורת סלולארית – עבר הווה ועתיד
Cellular and Mobile Wireless Networks
TESTNG TECHNIQUES FOR NB-IOT PHYSICAL LAYER
Third Generation (3G) Mobile Communication Systems
Multicarrier Communication and Cognitive Radio
Wireless Wide Area Networks 3G/4G - mobile phones.
Part 5 4th Generation Systems and Long Term Evolution
Wireless Standards adaptation
Wireless Wide Area Networks
Cellular and Mobile Wireless Networks
Analog Transmission Example 1
教育部補助「行動寬頻尖端技術跨校教學聯盟第二期計畫 -- 行動寬頻網路與應用 -- 小細胞基站聯盟中心」 課程模組: 「LTE-Small Cell 核心網路架構及服務」 單元-A2:LTE-Small Cell的調變技術 計畫主持人:許蒼嶺 (國立中山大學 電機工程學系) 授課教師:萬欽德 (國立高雄第一科技大學.
Cellular Networks and Mobile Computing COMS , Spring 2012
Supervised By Dr. / Adel Yehia Ezzat
Generations of Mobile Communication
Presentation transcript:

LTE-A : 4G Wireless Broadband Networks 中山大學 電機系 許蒼嶺教授

行動通信標準演進

Evolution of Wireless Access Technologies 4G Air Interfaces CDMA 2000-1X HRPDA 1x EVDO 1x EVDV Rel. C Rel. D Wide Area Mobile 3GPP2 MOBILE BROADBAND GSM GPRS EDGE UMTS HSPA LTE 3GPP 802.16e (Mobile WIMAX) Mobile Industry Coverage/Mobility Metro Area Nomadic 802.16a/d (Fixed NLOS) Fixed Wireless Industry 802.11n (smart antennas) 802.11 Mesh extns. 802.16 (Fixed LOS) Dial Up DSL Experience Local Area Fixed Data Rates (kbps) 802.11b/a/g 100,000 + Higher Data Rate / Lower Cost per Bit

3GPP

3GPP Radio Access Milestones

Operator’s Service Stack IMS Layer Application services Mobility, Policy and Administration Services EPC Core network Access technologies connection gateways Access Technologies WiMAX LTE DSLAM WiFi Devices

Population penetration of mobile, fixed and broadband across Asia-Pacific

TDMA/OFDM/OFDMA

Modulations & Channel Size Uplink Mandarory US European Downlink Mandarory Access Range: QPSK > QAM-16 > QAM-64 Data Rate: QAM-64 > QAM-16 > QPSK

Frame Durations with TDD Frame Structure 0.5/1/2 ms

Number of PS in 16-QAM Frame duration = 1 ms Signal (Baud) rate = 16 Mbauds/sec 4 bits in a signal (baud) using 16-QAM Ts=LT, Data rate, R = LS = 4 x16 = 64 Mbps Number of PS (Physical Slot) (64 Mbps x 1 ms) / 16 bits = 4000 Assume every PS = 16 bits

4G: LTE-A vs IEEE 802.16m ITU-R’s IMT-Advanced (4G) requirements up to 1 Gbps in static or low mobility environment up to 100 Mbps in high-speed mobile environment Multicarrier is the technology to utilize wider bandwidth for parallel data transmission across multiple RF carriers. IEEE 802.16m LTE-A Carrier Aggregation (CA) Component Carrier (CC)

IEEE 802.16m OFDMA Parameters Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20 Over-sampling Factor 28/25 8/7 Sampling Frequency (MHz) 5.6 8 11.2 22.4 FFT Size 512 1024 2048 Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 Useful Symbol Time Tu (μs) 91.429 128 102.4 Cyclic Prefix (CP) Tg=1/8 Tu Symbol Time Ts (μs) 102.857 144 115.2 FDD No. of OFDM symbols per Frame 48 34 43 Idle time (μs) 62.857 104 46.40 TDD 47 33 42 TTG + RTG (μs) 165.714 248 161.6 Tg=1/16 Tu Symbol Time Ts(μs) 97.143 136 108.8 51 36 45 45.71 50 35 44 142.853 240 212.8 Number of used subcarriers 433 865 1729

802.16m Guard Bands

Baud Rate B: baud rate, number of symbols in one second S: number of symbols in an OFDMA frame T: OFDMA frame duration N: number of carriers in an OFDMA frame B = ( ) x N

Data Rate vs Baud Rate R: data rate (bps) M: number of different signal elements in MCS B: baud rate, number of symbols in one second R = B x

LTE Frame Structure Assume total BW = 30 Mhz and 64-QAM One sub-carrier = 15 Khz Total sub-carriers = 30 MHz/15 Khz = 2000 sub-carriers Total capacity (Data rate) = 2000 x 14000 symbols/sec x 6 bits/symbol = 168 Mbps One OFDMA frame (10 msec) = 10 sub-frames One sub-frame (1 msec) = 2 slots One slot (0.5 msec) = 7 symbols Symbol rate = 7/0.5 msec = 14000 symbols/sec One RE = One symbol x one sub-carrier One RB = 7 symbols x N sub-carriers

 

Frame time = 5 msec , Number of carriers = 192   Frame time = 5 msec , Number of carriers = 192 Data Rate = (360/5 msec)x192= 13.824 Mbps

LTE-A Enhanced Multicast Broadcast Service (EMBS)

Channel Coding Systematic bits Turbo coding 1/3 Systematic bits Parity bits Mapping to the circular buffer Systematic bits Parity bits

不同重傳次數的HARQ封包 RV=0 RV=1 RV=2 RV=3 Coding rate=3/4 1st transmission Systematic bits Parity bits 1st transmission 2nd transmission 3rd transmission 4th transmission Coding rate=3/4

HARQ在Uplink的運作流程 + 1st transmission 2nd transmission 3rd transmission ERROR MN NACK BS ACK success ERROR 1st transmission 2nd transmission || 3rd transmission + 4th transmission MN’s HARQ buffer BS’s HARQ buffer

LTE-A: E-MBS Deployment with Broadcast Only and Mixed Carrier

LTE-A: Carrier Types From the perspective of an advanced MS (AMS) Primary carriers exchanges traffic and control signals with an advanced BS (ABS) mobility, state, and context Secondary carriers An ABS can additionally assign secondary carrier(s) to an AMS Controlled by the ABS through the primary carrier

LTE-A: Carrier Types From the perspective of an ABS Fully configured carrier carrying all control channels synchronization, broadcast, multicast, and unicast control channels both single-carrier and multicarrier AMSs can be served Partially configured carrier primarily to support downlink only transmission only for frequency-division duplex (FDD) deployment a dedicated EMBS carrier is one example

Multicarrier Frame Structure (LTE-A and WiMAX 802.16m) An example of multicarrier frame structure with legacy support.

Multicarrier Transceiver Architectures (LTE-A) Basic concept of subcarrier alignment.

Multicarrier Transceiver Architectures (LTE-A) Different types of AMS transceiver architecture for multicarrier aggregation.

Network entry procedure for multicarrier support. Network Entry (LTE-A) Network entry procedure for multicarrier support. AAI: Advanced Air Interface AAI_REG-REQ: 3 bits

Activation and Deactivation of Assigned Carriers (LTE-A) Multilevel carrier management scheme.

Handover (LTE-A)

Relay Related Connections

Fractional Frequency Reuse (FFR) for Directional Antenna

CA Scenarios and Component Carrier (CC) Types (LTE-A) Example of carrier aggregation scenarios: a) contiguous aggregation of five component carriers with equal bandwidth b) non-contiguous aggregation of component carriers with different bandwidths

Primary and Secondary CCs (LTE-A) UE served bPCell/SCell configuration for different y the same eNB