Coordination of Endocrine and Nervous Systems in Vertebrates

Slides:



Advertisements
Similar presentations
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Advertisements

Organs of the Endocrine System
By Samantha Douglass & Ashley Walker
1 Key concepts: Hormones and other signaling molecules bind to target receptors, triggering specific response pathways. Negative feedback and antagonistic.
Students Get handout – Ch 45 Guided Notes Turn in Case Study – box
Chapter 45: Hormones and the Endocrine System
Chapter 26: Hormones and the Endocrine System
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
THE HYPOTHALAMUS AND PITUITARY ARE CENTRAL TO ENDOCRINE REGULATION Chapter 45, Section 3.
 Chapter 45: Endocrine System. Learning Targets 1. I can idnetify and explain the role that hormones have in homeostatic pathways.  I can diagram how.
U Chapter 45 ~ Chemical Signals in Animals. Regulatory systems u Hormone~ chemical signal secreted into body fluids (blood) communicating regulatory messages.
The Endocrine System Chapter 47. Endocrine System: The Body’s Regulatory System The nervous system is involved with high speed messages The endocrine.
Endocrine System.
Major endocrine glands:
The Endocrine System. Thyroid Gland  Found at the base of the throat  Consists of two lobes and a connecting isthmus  Produces two hormones.
Chapter Pgs Objective: I can summarize the function of many different endocrine glands and hormones and be able to explain how a.
Chapter 40 The endocrine system.
The endocrine system Advanced Health.
Chapter 45 Hormones.
Chapter 45: Hormones & The Endocrine System
Chapter 45 ~ Chemical Signals in Animals
Chapter 26 Chemical Regulation.
Endocrine System.
Biology, 9th ed, Sylvia Mader
CHAPTER 25 Hormones.
What role do hormones play in transforming a caterpillar into a butterfly? Figure 45.1 For the Discovery Video Endocrine System, go to Animation and Video.
Signalling molecules Label the diagrams using the following terms. You may wish to also (in brackets) write an example next to some of the terms that relates.
Endocrinology and hormones
Endocrine System Chapter 10.
CHAPTER 26 Chemical Regulation
Hormones and the Endocrine System
Endocrine System Part 5B
Chapter 45: Endocrine System
Test – Friday Immune system animations – on-line
Homeostasis is dependent on
Hormones and the Endocrine System
Overview: The Body’s Long-Distance Regulators
HORMONES AND THE ENDOCRINE SYSTEM
Hormones and the Endocrine System
ENDOCRINE SYSTEM INTRODUCTION LAB 1
Chapter 45 Endocrine System Chemical Signals in Animals.
Endocrine System Jeopardy
Parathyroid Hormone and Vitamin D: Control of Blood Calcium
Hormones and the Endocrine System
Hormones that affect short term and long term stress…
Insulin and Glucagon: Control of Blood Glucose
Hormones and the Endocrine System
Hormones and the Endocrine System
CHEMICAL SIGNALS IN ANIMALS
Hormones and the Endocrine System
General Animal Biology
Its Parts and Functions
Hormones and the Endocrine System
Chapter 45 Hormones and the Endocrine System
Regulation and Control
Hormones and the Endocrine System
Hormones and the Endocrine System
Hormones and the Endocrine System
Hormones and the Endocrine System
Hormones and the Endocrine System
CHEMICAL SIGNALS IN ANIMALS
The Endocrine System.
General Animal Biology
Endocrine System Chemical Control Chapter #37, pg
Overview: The Body’s Long-Distance Regulators Hormones
General Animal Biology
Hormones and the Endocrine System
Hormones and the Endocrine System
Endocrine System Remember: Your nervous system senses impulses over a system of wire-like neurons that carry messages from one cell to another The term.
General Animal Biology
Presentation transcript:

Coordination of Endocrine and Nervous Systems in Vertebrates The hypothalamus receives information from the nervous system and initiates responses through the endocrine system Attached to the hypothalamus is the pituitary gland composed of the posterior pituitary and anterior pituitary

The posterior pituitary stores and secretes hormones that are made in the hypothalamus The anterior pituitary makes and releases hormones under regulation of the hypothalamus

Cerebrum Thalamus Pineal gland Hypothalamus Cerebellum Pituitary gland Fig. 45-14 Cerebrum Thalamus Pineal gland Hypothalamus Cerebellum Pituitary gland Spinal cord Figure 45.14 Endocrine glands in the human brain Hypothalamus Posterior pituitary Anterior pituitary

Table 45-1 Table 45.1

Table 45-1a Table 45.1

Table 45-1b Table 45.1

Table 45-1c Table 45.1

Table 45-1d Table 45.1

Posterior Pituitary Hormones The two hormones released from the posterior pituitary act directly on nonendocrine tissues

Mammary glands, uterine muscles Fig. 45-15 Hypothalamus Neurosecretory cells of the hypothalamus Axon Posterior pituitary Anterior pituitary Figure 45.15 Production and release of posterior pituitary hormones HORMONE ADH Oxytocin TARGET Kidney tubules Mammary glands, uterine muscles

Oxytocin induces uterine contractions and the release of milk Suckling sends a message to the hypothalamus via the nervous system to release oxytocin, which further stimulates the milk glands This is an example of positive feedback, where the stimulus leads to an even greater response Antidiuretic hormone (ADH) enhances water reabsorption in the kidneys

Hypothalamus/ posterior pituitary Fig. 45-16 Pathway Example Stimulus Suckling + Sensory neuron Hypothalamus/ posterior pituitary Neurosecretory cell Posterior pituitary secretes oxytocin ( ) Positive feedback Blood vessel Figure 45.16 A simple neurohormone pathway Target cells Smooth muscle in breasts Response Milk release

Anterior Pituitary Hormones Hormone production in the anterior pituitary is controlled by releasing and inhibiting hormones from the hypothalamus For example, the production of thyrotropin releasing hormone (TRH) in the hypothalamus stimulates secretion of the thyroid stimulating hormone (TSH) from the anterior pituitary

Liver, bones, other tissues Fig. 45-17 Tropic effects only: FSH LH TSH ACTH Neurosecretory cells of the hypothalamus Nontropic effects only: Prolactin MSH Nontropic and tropic effects: GH Hypothalamic releasing and inhibiting hormones Portal vessels Endocrine cells of the anterior pituitary Posterior pituitary Pituitary hormones Figure 45.17 Production and release of anterior pituitary hormones HORMONE FSH and LH TSH ACTH Prolactin MSH GH TARGET Testes or ovaries Thyroid Adrenal cortex Mammary glands Melanocytes Liver, bones, other tissues

Hormone Cascade Pathways A hormone can stimulate the release of a series of other hormones, the last of which activates a nonendocrine target cell; this is called a hormone cascade pathway The release of thyroid hormone results from a hormone cascade pathway involving the hypothalamus, anterior pituitary, and thyroid gland Hormone cascade pathways are usually regulated by negative feedback

Hypothalamus secretes thyrotropin-releasing hormone (TRH ) Fig. 45-18-1 Pathway Example Stimulus Cold Sensory neuron Hypothalamus secretes thyrotropin-releasing hormone (TRH ) Neurosecretory cell Figure 45.18 A hormone cascade pathway Blood vessel

Hypothalamus secretes thyrotropin-releasing hormone (TRH ) Fig. 45-18-2 Pathway Example + Stimulus Cold Sensory neuron Hypothalamus secretes thyrotropin-releasing hormone (TRH ) Neurosecretory cell Blood vessel Figure 45.18 A hormone cascade pathway Anterior pituitary secretes thyroid-stimulating hormone (TSH or thyrotropin )

Figure 45.18 A hormone cascade pathway Example Stimulus Cold Sensory neuron – Hypothalamus secretes thyrotropin-releasing hormone (TRH ) Neurosecretory cell Blood vessel – Anterior pituitary secretes thyroid-stimulating hormone (TSH or thyrotropin ) Negative feedback Figure 45.18 A hormone cascade pathway Thyroid gland secretes thyroid hormone (T3 and T4 ) Target cells Body tissues Increased cellular metabolism Response

Tropic Hormones A tropic hormone regulates the function of endocrine cells or glands The four strictly tropic hormones are Thyroid-stimulating hormone (TSH) Follicle-stimulating hormone (FSH) Luteinizing hormone (LH) Adrenocorticotropic hormone (ACTH)

Nontropic Hormones Nontropic hormones target nonendocrine tissues Nontropic hormones produced by the anterior pituitary are Prolactin (PRL) Melanocyte-stimulating hormone (MSH)

Prolactin stimulates lactation in mammals but has diverse effects in different vertebrates MSH influences skin pigmentation in some vertebrates and fat metabolism in mammals

Growth Hormone Growth hormone (GH) is secreted by the anterior pituitary gland and has tropic and nontropic actions It promotes growth directly and has diverse metabolic effects It stimulates production of growth factors An excess of GH can cause gigantism, while a lack of GH can cause dwarfism

Concept 45.4: Endocrine glands respond to diverse stimuli in regulating metabolism, homeostasis, development, and behavior Endocrine signaling regulates metabolism, homeostasis, development, and behavior

Thyroid Hormone: Control of Metabolism and Development The thyroid gland consists of two lobes on the ventral surface of the trachea It produces two iodine-containing hormones: triiodothyronine (T3) and thyroxine (T4)

Thyroid hormones stimulate metabolism and influence development and maturation Hyperthyroidism, excessive secretion of thyroid hormones, causes high body temperature, weight loss, irritability, and high blood pressure Graves’ disease is a form of hyperthyroidism in humans Hypothyroidism, low secretion of thyroid hormones, causes weight gain, lethargy, and intolerance to cold

High level iodine uptake Normal iodine uptake Fig. 45-19 High level iodine uptake Normal iodine uptake Figure 45.19 Thyroid scan

Proper thyroid function requires dietary iodine for hormone production

Parathyroid Hormone and Vitamin D: Control of Blood Calcium Two antagonistic hormones regulate the homeostasis of calcium (Ca2+) in the blood of mammals Parathyroid hormone (PTH) is released by the parathyroid glands Calcitonin is released by the thyroid gland

Falling blood Ca2+ level Blood Ca2+ level (about 10 mg/100 mL) Fig. 45-20-1 PTH Parathyroid gland (behind thyroid) Figure 45.20 The roles of parathyroid hormone (PTH) in regulating blood calcium levels in mammals STIMULUS: Falling blood Ca2+ level Homeostasis: Blood Ca2+ level (about 10 mg/100 mL)

Falling blood Ca2+ level Blood Ca2+ level (about 10 mg/100 mL) Fig. 45-20-2 Active vitamin D Stimulates Ca2+ uptake in kidneys Increases Ca2+ uptake in intestines PTH Parathyroid gland (behind thyroid) Stimulates Ca2+ release from bones Figure 45.20 The roles of parathyroid hormone (PTH) in regulating blood calcium levels in mammals STIMULUS: Falling blood Ca2+ level Blood Ca2+ level rises. Homeostasis: Blood Ca2+ level (about 10 mg/100 mL)

PTH increases the level of blood Ca2+ It releases Ca2+ from bone and stimulates reabsorption of Ca2+ in the kidneys It also has an indirect effect, stimulating the kidneys to activate vitamin D, which promotes intestinal uptake of Ca2+ from food Calcitonin decreases the level of blood Ca2+ It stimulates Ca2+ deposition in bones and secretion by kidneys

Adrenal Hormones: Response to Stress The adrenal glands are adjacent to the kidneys Each adrenal gland actually consists of two glands: the adrenal medulla (inner portion) and adrenal cortex (outer portion)

Catecholamines from the Adrenal Medulla The adrenal medulla secretes epinephrine (adrenaline) and norepinephrine (noradrenaline) These hormones are members of a class of compounds called catecholamines They are secreted in response to stress-activated impulses from the nervous system They mediate various fight-or-flight responses

Epinephrine and norepinephrine Trigger the release of glucose and fatty acids into the blood Increase oxygen delivery to body cells Direct blood toward heart, brain, and skeletal muscles, and away from skin, digestive system, and kidneys The release of epinephrine and norepinephrine occurs in response to nerve signals from the hypothalamus

Figure 45.21 Stress and the adrenal gland Nerve signals Hypothalamus Spinal cord Releasing hormone Nerve cell Anterior pituitary Blood vessel ACTH Adrenal medulla Adrenal cortex Adrenal gland Kidney (a) Short-term stress response Figure 45.21 Stress and the adrenal gland (b) Long-term stress response Effects of epinephrine and norepinephrine: Effects of mineralocorticoids: Effects of glucocorticoids: 1. Glycogen broken down to glucose; increased blood glucose 2. Increased blood pressure 3. Increased breathing rate 4. Increased metabolic rate 1. Retention of sodium ions and water by kidneys 1. Proteins and fats broken down and converted to glucose, leading to increased blood glucose 5. Change in blood flow patterns, leading to increased alertness and decreased digestive, excretory, and reproductive system activity 2. Increased blood volume and blood pressure 2. Possible suppression of immune system

Stress Nerve signals Hypothalamus Spinal cord Releasing hormone Fig. 45-21a Stress Nerve signals Hypothalamus Spinal cord Releasing hormone Nerve cell Anterior pituitary Blood vessel ACTH Adrenal medulla Figure 45.21 Stress and the adrenal gland Adrenal cortex Adrenal gland Kidney

(a) Short-term stress response Fig. 45-21b Adrenal medulla Adrenal gland Kidney (a) Short-term stress response Effects of epinephrine and norepinephrine: 1. Glycogen broken down to glucose; increased blood glucose 2. Increased blood pressure 3. Increased breathing rate 4. Increased metabolic rate Figure 45.21a Stress and the adrenal gland 5. Change in blood flow patterns, leading to increased alertness and decreased digestive, excretory, and reproductive system activity

Steroid Hormones from the Adrenal Cortex The adrenal cortex releases a family of steroids called corticosteroids in response to stress These hormones are triggered by a hormone cascade pathway via the hypothalamus and anterior pituitary Humans produce two types of corticosteroids: glucocorticoids and mineralocorticoids

(b) Long-term stress response Fig. 45-21c Adrenal cortex Adrenal gland Kidney (b) Long-term stress response Effects of mineralocorticoids: Effects of glucocorticoids: 1. Retention of sodium ions and water by kidneys 1. Proteins and fats broken down and converted to glucose, leading to increased blood glucose Figure 45.21b Stress and the adrenal gland 2. Increased blood volume and blood pressure 2. Possible suppression of immune system

Glucocorticoids, such as cortisol, influence glucose metabolism and the immune system Mineralocorticoids, such as aldosterone, affect salt and water balance The adrenal cortex also produces small amounts of steroid hormones that function as sex hormones

Gonadal Sex Hormones The gonads, testes and ovaries, produce most of the sex hormones: androgens, estrogens, and progestins All three sex hormones are found in both males and females, but in different amounts

The testes primarily synthesize androgens, mainly testosterone, which stimulate development and maintenance of the male reproductive system Testosterone causes an increase in muscle and bone mass and is often taken as a supplement to cause muscle growth, which carries health risks

Embryonic gonad removed Fig. 45-22 RESULTS Appearance of Genitals Embryonic gonad removed Chromosome Set No surgery XY (male) Male Female Figure 45.22 What role do hormones play in making a mammal male or female? XX (female) Female Female

Estrogens, most importantly estradiol, are responsible for maintenance of the female reproductive system and the development of female secondary sex characteristics In mammals, progestins, which include progesterone, are primarily involved in preparing and maintaining the uterus Synthesis of the sex hormones is controlled by FSH and LH from the anterior pituitary

Melatonin and Biorhythms The pineal gland, located in the brain, secretes melatonin Light/dark cycles control release of melatonin Primary functions of melatonin appear to relate to biological rhythms associated with reproduction

Pancreas secretes glucagon ( ) Fig. 45-UN2 Pathway Example – Stimulus Low blood glucose Pancreas secretes glucagon ( ) Endocrine cell Negative feedback Blood vessel Target cells Liver Glycogen breakdown, glucose release into blood Response

Cortisol level in blood Fig. 45-UN3 No drug Dexamethasone Cortisol level in blood Normal Patient X

Fig. 45-UN4

You should now be able to: Distinguish between the following pairs of terms: hormones and local regulators, paracrine and autocrine signals Describe the evidence that steroid hormones have intracellular receptors, while water-soluble hormones have cell-surface receptors Explain how the antagonistic hormones insulin and glucagon regulate carbohydrate metabolism Distinguish between type 1 and type 2 diabetes

Explain how the hypothalamus and the pituitary glands interact and how they coordinate the endocrine system Explain the role of tropic hormones in coordinating endocrine signaling throughout the body List and describe the functions of hormones released by the following: anterior and posterior pituitary lobes, thyroid glands, parathyroid glands, adrenal medulla, adrenal cortex, gonads, pineal gland