ΠΛΕ70: Ανάκτηση Πληροφορίας

Slides:



Advertisements
Similar presentations
Lucene in action Information Retrieval A.A – P. Ferragina, U. Scaiella – – Dipartimento di Informatica – Università di Pisa –
Advertisements

Assignment 2: Full text search with Lucene Mathias Mosolf, Alexander Frenzel.
Lucene Tutorial Based on Lucene in Action Michael McCandless, Erik Hatcher, Otis Gospodnetic.
Introduction to Information Retrieval Introduction to Information Retrieval Lucene Tutorial Chris Manning and Pandu Nayak.
Chapter 5: Introduction to Information Retrieval
© Copyright 2012 STI INNSBRUCK Apache Lucene Ioan Toma based on slides from Aaron Bannert
Advanced Indexing Techniques with Apache Lucene - Payloads Advanced Indexing Techniques with Michael Busch
Advanced Indexing Techniques with
The Lucene Search Engine Kira Radinsky Modified by Amit Gross to Lucene 4 Based on the material from: Thomas Paul and Steven J. Owens.
Lucene in action Information Retrieval A.A – P. Ferragina, U. Scaiella – – Dipartimento di Informatica – Università di Pisa –
Lucene Part3‏. Lucene High Level Infrastructure When you look at building your search solution, you often find that the process is split into two main.
Information Retrieval in Practice
The Lucene Search Engine Kira Radinsky Based on the material from: Thomas Paul and Steven J. Owens.
Parametric search and zone weighting Lecture 6. Recap of lecture 4 Query expansion Index construction.
Introduction to Lucene Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
Overview of Search Engines
Introduction to Information Retrieval Introduction to Information Retrieval Lucene Tutorial Chris Manning, Pandu Nayak, and Prabhakar Raghavan.
Full-Text Search with Lucene Yonik Seeley 02 May 2007 Amsterdam, Netherlands.
Full-Text Search with Lucene Yonik Seeley 02 May 2007 Amsterdam, Netherlands slides:
1 Introduction to Lucene Rong Jin. What is Lucene ?  Lucene is a high performance, scalable Information Retrieval (IR) library Free, open-source project.
Apache Lucene in LexGrid. Lucene Overview High-performance, full-featured text search engine library. Written entirely in Java. An open source project.
ASP.NET Programming with C# and SQL Server First Edition
Softvérové knižnice a systémy Vyhľadávanie informácií Michal Laclavík.
1 Lucene Jianguo Lu School of Computer Science University of Windsor.
Lucene Boot Camp I Grant Ingersoll Lucid Imagination Nov. 3, 2008 New Orleans, LA.
Lucene Performance Grant Ingersoll November 16, 2007 Atlanta, GA.
Vyhľadávanie informácií Softvérové knižnice a systémy Vyhľadávanie informácií Michal Laclavík.
Lucene Part2. Lucene Jarkarta Lucene ( is a high- performance, full-featured, java, open-source, text search engine.
Chapter 2 Architecture of a Search Engine. Search Engine Architecture n A software architecture consists of software components, the interfaces provided.
1 Module Objective & Outline Module Objective: After completing this Module, you will be able to, appreciate java as a programming language, write java.
Lucene Part1 ‏. Lucene Use Case Store data in a 2 dimensional way How do we do this. Spreadsheet Relational Database X/Y.
Indexing UMLS concepts with Apache Lucene Julien Thibault University of Utah Department of Biomedical Informatics.
Chapter 6: Information Retrieval and Web Search
Search Engines. Search Strategies Define the search topic(s) and break it down into its component parts What terms, words or phrases do you use to describe.
Lucene-Demo Brian Nisonger. Intro No details about Implementation/Theory No details about Implementation/Theory See Treehouse Wiki- Lucene for additional.
“ Lucene.Net is a source code, class-per-class, API-per-API and algorithmatic port of the Java Lucene search engine to the C# and.NET ”
Iccha Sethi Serdar Aslan Team 1 Virginia Tech Information Storage and Retrieval CS 5604 Instructor: Dr. Edward Fox 10/11/2010.
Design a full-text search engine for a website based on Lucene
JAVA BEANS JSP - Standard Tag Library (JSTL) JAVA Enterprise Edition.
8 Chapter Eight Server-side Scripts. 8 Chapter Objectives Create dynamic Web pages that retrieve and display database data using Active Server Pages Process.
Lucene Jianguo Lu.
Presented By:. What is JavaHelp: Most software developers do not look forward to spending time documenting and explaining their product. JavaSoft has.
General Architecture of Retrieval Systems 1Adrienn Skrop.
Introduction to Information Retrieval Introduction to Information Retrieval ΜΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Εισαγωγή στο.
Lucene : Text Search IG5 – TILE Esther Pacitti. Basic Architecture.
Information Retrieval in Practice
Lucene Tutorial Chris Manning and Pandu Nayak
Jianguo Lu School of Computer Science University of Windsor
EECE 310: Software Engineering
Searching AND INDEXING Big data
Search Engine Architecture
IST 516 Fall 2010 Dongwon Lee, Ph.D. Wonhong Nam, Ph.D.
Query Models Use Types What do search engines do.
CS276 Lucene Section.
Searching and Indexing
Java Primer 1: Types, Classes and Operators
Chapter 3: Using Methods, Classes, and Objects
IST 516 Fall 2011 Dongwon Lee, Ph.D.
Functional Programming with Java
Testing REST IPA using POSTMAN
Query Languages.
Query Models Use Types What do search engines do.
Chapter 27 WWW and HTTP.
Lucene in action Information Retrieval A.A
Lucene/Solr Architecture
Introduction to Elasticsearch with basics of Lucene May 2014 Meetup
Getting Started With Solr
Information Retrieval and Web Design
Table of Contents 1) Understanding Lucene 2) Lucene Indexing
Introduction to Search Engines
Presentation transcript:

ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 11: Εισαγωγή στο Lucene.

Τι είναι; Open source Java library for IR (indexing and searching) Lets you add search to your application, not a complete search system by itself -- software library not an application Written by Doug Cutting Used by LinkedIn, Twitter, Netflix … and many more (see http://wiki.apache.org/lucene-java/PoweredBy) Ports/integrations to other languages C/C++, C#, Ruby, Perl, Python, PHP, … Beyond core jar, a number of extension modules contrib modules

Πηγές Lucene: http://lucene.apache.org/core/ Lucene in Action: http://www.manning.com/hatcher3/ Code samples available for download πολύ χρήσιμο JUnit: http://junit.org/ Some examples are JUnit test cases Automatically executes all methods with public void test-XXX() signature

Lucene in a search system Users Index document Analyze document Search UI Index Build document Build query Render results Acquire content Raw Content Run query INDEX SEARCH

Lucene in a search system: index Index document Steps Acquire content Build content Analyze documents Index documents Analyze document Index Build document Acquire content Raw Content INDEX

Lucene in a search system: index Acquire content (not supported by core Lucid) Depending on type Crawler or spiders (web) Specific APIs provided by the application (e.g., Twitter, FourSquare) Complex software if scattered at various location, etc Additional issues Access Control Lists Online/real-time Complex documents (e.g., XML, relational databases, etc) Solr (Tika, chapter 7)

Lucene in a search system: index Build document (not supported by core Lucid) A document is the unit of search Each document consists of separately named fields with values (title, body, etc) What constitutes a document and what are its fields? Lucene provides an API for building fields and documents Other issues (not handled) Extract text from document (if binary) Handle markups (XML, HTML) Add additional fields (semantic analysis) Boost individual files At indexing time (per document and field, section 2.5) At query time (section 5.7)

Lucene in a search system: index Analyze document (supported by core Lucid) Given a document -> extract its tokens Details in Chapter 4 Issues handle compounds case sensitivity inject synonyms spell correction collapse singular and plural stemmer (Porter’s)

Lucene in a search system: index Index document (supported by core Lucid) Details in Chapter 2

Lucene in a search system: search Users STEPS Enter query (UI) Build query Run search query Render results (UI) Search UI Index Build query Render results Run query SEARCH

Lucene in a search system: search Search User Interface (UI) No default search UI, but many useful contrib modules General instructions Simple (do not present a lot of options in the first page) a single search box better than 2-step process Result presentation is important highlight matches (highlighter contrib modules, section 8.3&8.4) make sort order clear, etc Be transparent: e.g., explain if you expand search for synonyms, autocorrect errors (spellchecker contrib module, section 8.5 , etc)

Lucene in a search system: search Build query (supported by core Lucid) Provides a package QueryParser: process the user text input into a Query object (Chapter 3) Query may contain Boolean operators, phrase queries, wildcard terms

Lucene in a search system: search Search query (supported by core Lucid) See Chapter 6 Three models Pure Boolean model (no sort) Vector space model Probabilistic model Lucene combines Boolean and vector model – select which one on a search-by-search basis Customize

Lucene in a search system: search Render results (supported by core Lucid) UI issues

Lucene in action Get code from the book Command line Indexer …/lia2e/src/lia/meetlucene/Indexer.java Command line Searcher …/lia2e3/src/lia/meetlucene/Searcher.java

How Lucene models content A Document is the atomic unit of indexing and searching A Document contains Fields Fields have a name and a value Examples: Title, author, date, abstract, body, URL, keywords, .. Different documents can have different fields You have to translate raw content into Fields Search a field using name:term, e.g., title:lucene

Documents and Fields Parametric or zone indexing There is one (parametric) index for each field Also, supports weighted field scoring

Basic Application Document super_name: Spider-Man name: Peter Parker category: superhero powers: agility, spider-sense Hits (Matching Docs) Query (powers:agility) Get Lucene jar file Write indexing code to get data and create Document objects Write code to create query objects Write code to use/display results addDocument() search() IndexWriter IndexSearcher Get Lucene jar file Write indexing code to get data and create Document objects to index with the IndexWriter Write code to create query objects for search Write code to use/display results Only a single IndexWriter may be open on an index An IndexWriter is thread-safe, so multiple threads can add documents at the same time. Multiple IndexSearchers may be opened on an index IndexSearchers are also thread safe, and can handle multiple searches concurrently an IndexSearcher instance has a static view of the index... it sees no updates after it has been opened An index may be concurrently added to and searched, but new additions won’t show up until the IndexWriter is closed and a new IndexSearcher is opened. Lucene Index

Core indexing classes IndexWriter Directory Analyzer Central component that allows you to create a new index, open an existing one, and add, remove, or update documents in an index Directory Abstract class that represents the location of an index Analyzer Extracts tokens from a text stream

Creating an IndexWriter import org.apache.lucene.index.IndexWriter; import org.apache.lucene.store.Directory; import org.apache.lucene.analysis.standard.StandardAnalyzer; ... private IndexWriter writer; ... public Indexer(String indexDir) throws IOException { Directory dir = FSDirectory.open(new File(indexDir)); writer = new IndexWriter( dir, new StandardAnalyzer(Version.LUCENE_30), true, IndexWriter.MaxFieldLength.UNLIMITED); }

Core indexing classes Document Field Represents a collection of named Fields. Text in these Fields are indexed. Field Note: Lucene Fields can represent both “fields” and “zones” as described in the textbook

A Document contains Fields import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; ... protected Document getDocument(File f) throws Exception { Document doc = new Document(); doc.add(new Field("contents”, new FileReader(f))) doc.add(new Field("filename”, f.getName(), Field.Store.YES, Field.Index.NOT_ANALYZED)); doc.add(new Field("fullpath”, f.getCanonicalPath(), return doc; }

Index a Document with IndexWriter private IndexWriter writer; ... private void indexFile(File f) throws Exception { Document doc = getDocument(f); writer.addDocument(doc); }

Indexing a directory private IndexWriter writer; ... public int index(String dataDir, FileFilter filter) throws Exception { File[] files = new File(dataDir).listFiles(); for (File f: files) { if (... && (filter == null || filter.accept(f))) { indexFile(f); } return writer.numDocs();

Closing the IndexWriter private IndexWriter writer; ... public void close() throws IOException { writer.close(); }

Fields Fields may Be indexed or not Be stored or not Indexed fields may or may not be analyzed (i.e., tokenized with an Analyzer) Non-analyzed fields view the entire value as a single token (useful for URLs, paths, dates, social security numbers, ...) Be stored or not Useful for fields that you’d like to display to users Optionally store term vectors Like a positional index on the Field’s terms Useful for highlighting, finding similar documents, categorization

Field construction Lots of different constructors import org.apache.lucene.document.Field Field(String name, String value, Field.Store store, // store or not Field.Index index, // index or not Field.TermVector termVector); value can also be specified with a Reader, a TokenStream, or a byte[]

Field options Field.Store Field.Index Field.TermVector NO : Don’t store the field value in the index YES : Store the field value in the index Field.Index ANALYZED : Tokenize with an Analyzer NOT_ANALYZED : Do not tokenize NO : Do not index this field Couple of other advanced options Field.TermVector NO : Don’t store term vectors YES : Store term vectors Several other options to store positions and offsets

Field vector options TermVector.Yes TermVector.With_POSITIONS TermVector.With_OFFSETS TermVector.WITH_POSITIONS_OFFSETS TermVector.No

Using Field options Index Store TermVector Example usage NOT_ANALYZED YES NO Identifiers, telephone/SSNs, URLs, dates, ... ANALYZED WITH_POSITIONS_OFFSETS Title, abstract Body Document type, DB keys (if not used for searching) Hidden keywords

Document import org.apache.lucene.document.Field Constructor: Methods void add(Fieldable field); // Field implements // Fieldable String get(String name); // Returns value of // Field with given // name Fieldable getFieldable(String name); ... and many more

Multi-valued fields You can add multiple Fields with the same name Lucene simply concatenates the different values for that named Field Document doc = new Document(); doc.add(new Field(“author”, “chris manning”, Field.Store.YES, Field.Index.ANALYZED)); “prabhakar raghavan”, ...

Analyzers Tokenizes the input text Common Analyzers WhitespaceAnalyzer Splits tokens on whitespace SimpleAnalyzer Splits tokens on non-letters, and then lowercases StopAnalyzer Same as SimpleAnalyzer, but also removes stop words StandardAnalyzer Most sophisticated analyzer that knows about certain token types, lowercases, removes stop words, ...

Analysis examples “The quick brown fox jumped over the lazy dog” WhitespaceAnalyzer [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog] SimpleAnalyzer [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog] StopAnalyzer [quick] [brown] [fox] [jumped] [over] [lazy] [dog] StandardAnalyzer

More analysis examples “XY&Z Corporation – xyz@example.com” WhitespaceAnalyzer [XY&Z] [Corporation] [-] [xyz@example.com] SimpleAnalyzer [xy] [z] [corporation] [xyz] [example] [com] StopAnalyzer StandardAnalyzer [xy&z] [corporation] [xyz@example.com]

What’s inside an Analyzer? Analyzers need to return a TokenStream public TokenStream tokenStream(String fieldName, Reader reader) TokenStream Tokenizer TokenFilter Reader Tokenizer TokenFilter

Tokenizers and TokenFilters WhitespaceTokenizer KeywordTokenizer LetterTokenizer StandardTokenizer ... TokenFilter LowerCaseFilter StopFilter PorterStemFilter ASCIIFoldingFilter StandardFilter ...

Adding/deleting Documents to/from an IndexWriter void addDocument(Document d); void addDocument(Document d, Analyzer a); Important: Need to ensure that Analyzers used at indexing time are consistent with Analyzers used at searching time // deletes docs containing term or matching // query. The term version is useful for // deleting one document. void deleteDocuments(Term term); void deleteDocuments(Query query);

Index format Each Lucene index consists of one or more segments A segment is a standalone index for a subset of documents All segments are searched A segment is created whenever IndexWriter flushes adds/deletes Periodically, IndexWriter will merge a set of segments into a single segment Policy specified by a MergePolicy You can explicitly invoke optimize() to merge segments

Basic merge policy Segments are grouped into levels Segments within a group are roughly equal size (in log space) Once a level has enough segments, they are merged into a segment at the next level up

Core searching classes

Core searching classes IndexSearcher Central class that exposes several search methods on an index (a class that “opens” the index) requires a Directory instance that holds the previously created index Term Basic unit of searching, contains a pair of string elements (field and word) Query Abstract query class. Concrete subclasses represent specific types of queries, e.g., matching terms in fields, boolean queries, phrase queries, …, most basic TermQuery QueryParser Parses a textual representation of a query into a Query instance

Creating an IndexSearcher import org.apache.lucene.search.IndexSearcher; ... public static void search(String indexDir, String q) throws IOException, ParseException { Directory dir = FSDirectory.open( new File(indexDir)); IndexSearcher is = new IndexSearcher(dir); }

Query and QueryParser import org.apache.lucene.search.Query; import org.apache.lucene.queryParser.QueryParser; ... public static void search(String indexDir, String q) throws IOException, ParseException QueryParser parser = new QueryParser(Version.LUCENE_30, "contents”, new StandardAnalyzer( Version.LUCENE_30)); Query query = parser.parse(q); }

Core searching classes (contd.) TopDocs Contains references to the top N documents returned by a search (the docID and its score) ScoreDoc Provides access to a single search result

search() returns TopDocs import org.apache.lucene.search.TopDocs; ... public static void search(String indexDir, String q) throws IOException, ParseException IndexSearcher is = ...; Query query = ...; TopDocs hits = is.search(query, 10); }

TopDocs contain ScoreDocs import org.apache.lucene.search.ScoreDoc; ... public static void search(String indexDir, String q) throws IOException, ParseException IndexSearcher is = ...; TopDocs hits = ...; for(ScoreDoc scoreDoc : hits.scoreDocs) { Document doc = is.doc(scoreDoc.doc); System.out.println(doc.get("fullpath")); }

Closing IndexSearcher public static void search(String indexDir, String q) throws IOException, ParseException ... IndexSearcher is = ...; is.close(); }

IndexSearcher Constructor: IndexSearcher(Directory d); deprecated

IndexReader Query IndexSearcher TopDocs IndexReader Directory

IndexSearcher Constructor: IndexSearcher(Directory d); deprecated IndexSearcher(IndexReader r); Construct an IndexReader with static method IndexReader.open(dir)

Searching a changing index Directory dir = FSDirectory.open(...); IndexReader reader = IndexReader.open(dir); IndexSearcher searcher = new IndexSearcher(reader); Above reader does not reflect changes to the index unless you reopen it. Reopening is more resource efficient than opening a new IndexReader. IndexReader newReader = reader.reopen(); If (reader != newReader) { reader.close(); reader = newReader; searcher = new IndexSearcher(reader); }

Near-real-time search IndexWriter writer = ...; IndexReader reader = writer.getReader(); IndexSearcher searcher = new IndexSearcher(reader); Now let us say there’s a change to the index using writer // reopen() and getReader() force writer to flush IndexReader newReader = reader.reopen(); if (reader != newReader) { reader.close(); reader = newReader; searcher = new IndexSearcher(reader); }

IndexSearcher Methods TopDocs search(Query q, int n); Document doc(int docID);

QueryParser Constructor Parsing methods QueryParser(Version matchVersion, String defaultField, Analyzer analyzer); Parsing methods Query parse(String query) throws ParseException; ... and many more

QueryParser syntax examples Query expression Document matches if… java Contains the term java in the default field java junit java OR junit Contains the term java or junit or both in the default field (the default operator can be changed to AND) +java +junit java AND junit Contains both java and junit in the default field title:ant Contains the term ant in the title field title:extreme –subject:sports Contains extreme in the title and not sports in subject (agile OR extreme) AND java Boolean expression matches title:”junit in action” Phrase matches in title title:”junit action”~5 Proximity matches (within 5) in title java* Wildcard matches java~ Fuzzy matches lastmodified:[1/1/09 TO 12/31/09] Range matches

Construct Querys programmatically TermQuery Constructed from a Term TermRangeQuery NumericRangeQuery PrefixQuery BooleanQuery PhraseQuery WildcardQuery FuzzyQuery MatchAllDocsQuery

TopDocs and ScoreDoc TopDocs methods ScoreDoc methods Number of documents that matched the search totalHits Array of ScoreDoc instances containing results scoreDocs Returns best score of all matches getMaxScore() ScoreDoc methods Document id doc Document score score

Scoring Scoring function uses basic tf-idf scoring with Programmable boost values for certain fields in documents Length normalization Boosts for documents containing more of the query terms IndexSearcher provides an explain() method that explains the scoring of a document

Based on “Lucene in Action” By Michael McCandless, Erik Hatcher, Otis Gospodnetic

ΤΕΛΟΣ 11ου Μαθήματος Ερωτήσεις? Υλικό των:       ΤΕΛΟΣ 11ου Μαθήματος Ερωτήσεις? Υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search (Stanford)