BWEC Cooling shell design

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

BWEC Cooling shell design PANDA 17/2 Collaboration Meeting 08.06.2017 BWEC Cooling shell design S. Ahmed, L. Capozza, A. Dbeyssi, P. Grasemann, J. Jorge Rico, F. Maas, O. Noll, D. Rodríguez Piñeiro, S. Wolf BWEC Cooling shell design 08.06.2017

Contents Overview Calculations (thermal and fluid mechanics) 3D design Simulations (thermal and fluid mechanics) Summary and future tasks BWEC Cooling shell design 08.06.2017 2

Overview 1 What is our aim? BWEC Cooling shell design 08.06.2017 3

Vacuum insulation panel (VIP) Overview Overview Cooling requirements Work at -25°C Maximum 500 mbar pressure drop (leakless-mode) Limited space Low temperature gradient Inserts Outer shell Mounting plate Cover Front cooling Boards Vacuum insulation panel (VIP) Crystals Coolant Inner shell Methanol 60% Water 40% Property Value Units Density 930 kg/m3 Dynamic viscosity 0.0077 kg/s/m Cp 3151 J/kg/K BWEC Cooling shell design 08.06.2017 4

THE PROCESS IS THIS Calculate & Design Simulate Test BWEC Cooling shell design 08.06.2017 5

Thermal and fluid mechanics calculations of the cooling shells 2 Thermal and fluid mechanics calculations of the cooling shells BWEC Cooling shell design 08.06.2017 6

Thermal calculations Electronics Heat flow through the walls Heat sources Electronics Heat flow through the walls Power to cool down P ° +70C ° APFEL 1.5 BWEC Cooling shell design 08.06.2017 7

Thermal calculations 150 mW/crystal * 524 crystals =78.60 W Electronics 150 mW/crystal * 524 crystals =78.60 W Applied in back side of crystals Cables out of the detector are not taken into account BWEC Cooling shell design 08.06.2017 8

Thermal calculations Worst case at 70°C surrounding temperature Outer face Heat flow through walls Front face Back face Worst case at 70°C surrounding temperature Inner face Source Value [W] Outer face 40.23 Inner face 17.25 Front face 16.63 Back face 18.59 Radiation 27.92 BWEC Cooling shell design 08.06.2017 9

Thermal calculations Constant cooling flow Initial temperature 30°C Power to cool down Constant cooling flow Initial temperature 30°C Final temperature -25°C Time 24 h 𝑷= 𝑚∙ 𝐶 𝑝 ∙∆𝑇 𝑡 = 0,06 𝑚 3 ∙ 8280 𝑘𝑔 𝑚 3 ∙ 262 𝐽 𝑘𝑔 ∙(55°𝐶) 24 ℎ∙3600 𝑠 =𝟖𝟑.𝟎𝟎 𝑾 BWEC Cooling shell design 08.06.2017 10

Summary of heat sources Stationary Transient Source Value [W] Outer face 40.23 Inner face 17.25 Front face 16.63 Back face 18.59 Radiation 27.92 Electronics 78.60 Cooling down 83.00 Total 199.30 203.70 Total*1.5 298.95 305.98 Safety factor 1.5 BWEC Cooling shell design 08.06.2017 11

Thermal calculations Mass flow calculation Distance between pipes 0.3 °C between inlet and outlet (homogeneity) 𝑚 = 𝑃 𝐶 𝑝 ∙∆𝑇 = 0.3237𝑘𝑔 𝑠 → 20.88𝑙 𝑚𝑖𝑛 2 outer shells and 2 inner shells Outer shell 7.34 l/min Inner shell 3.10 l/min Distance between pipes 0.25 °C max temperature difference (homogeneity) 15 mm thickness L= 150 mm 𝑃 𝐿 2 8∙𝑘∙𝑡 =∆𝑇→𝐿= 8∆𝑇𝑘𝑡 𝑃 L BWEC Cooling shell design 08.06.2017 12

Fluid mechanics calculations (Half outer shell) Outer shell parts 6 pipes  d = 13 mm 4 pipes  d = 10 mm 5 front square connectors 4 back elbow connectors BWEC Cooling shell design 08.06.2017 13

Fluid mechanics calculations Pipe with d = 10 mm ∆𝑝= 8 𝑄 2 𝜋 2 𝑓 𝐿 𝐷 5 𝜌=11.37𝑚𝑏𝑎𝑟 Elbow of d = 10 mm ∆𝑝= 8 𝑄 2 𝜋 2 𝑓 𝐿+ 𝐿 𝑒𝑞 𝐷 5 𝜌=21.05 𝑚𝑏𝑎𝑟 Pipe with d = 13 mm ∆𝑝= 8 𝑄 2 𝜋 2 𝑓 𝐿 𝐷 5 𝜌=3.99 𝑚𝑏𝑎𝑟 Square connector (estimation) ∆𝑝= 8 𝑄 2 𝜋 2 𝑓 𝐿+ 𝐿 𝑒𝑞 𝐷 5 𝜌=27.60 𝑚𝑏𝑎𝑟 BWEC Cooling shell design 08.06.2017 14

Fluid mechanics calculations summary Part Pressure drop (mbar) Amount Total Pd (mbar) Straight d =13 mm 3.99 6 23.94 Straight d = 10 mm 11.37 4 45.48 Elbow d = 10 mm 21.05 84.20 Square connectors 27.60 5 138.00 Total 291.62 mbar 𝟐𝟗𝟏.𝟔𝟐𝒎𝒃𝒂𝒓<𝟓𝟎𝟎𝒎𝒃𝒂𝒓 BWEC Cooling shell design 08.06.2017 15

An overview of the outer shell 3D design 🎨 3D design 3 An overview of the outer shell 3D design BWEC Cooling shell design 08.06.2017 16

3D design BWEC Cooling shell design 08.06.2017 17

3D design Front square connectors Back elbows BWEC Cooling shell design 08.06.2017 18

4 Simulations Thermal and fluid mechanics simulations Autodesk Simulation Mechanical & Autodesk CFD 2016 BWEC Cooling shell design 08.06.2017 19

Thermal simulations 1 quarter dummy for simulations Outer shell (Aluminum) Front shell (HDPE) Inserts (Aluminum) Gap (air 4mm) Crystals (PbWO4) Inner shell (Aluminum) 1 quarter dummy for simulations BWEC Cooling shell design 08.06.2017 20

Only outer and inner shells Thermal simulations Only outer and inner shells Not front shielding 2°C gradient -25.08 °C -23.14 °C BWEC Cooling shell design 08.06.2017 21

Back pipe with both inner and outer shells Thermal simulations Back pipe with both inner and outer shells Back homogeneity -25.10 °C Not front shielding 2°C gradient -23.16 °C BWEC Cooling shell design 08.06.2017 22

Front shell, back pipe and both inner and outer shells Thermal simulations Front shell, back pipe and both inner and outer shells Out of scale -5°C Front shielding Less than 0.5°C gradient -25.00 °C -24.00 °C Solid angle loss (further for the IP) BWEC Cooling shell design 08.06.2017 23

Possible 140W (STT worst elect. case) front without front cooling Thermal simulations Possible 140W (STT worst elect. case) front without front cooling -25,06 °C Huge temperature gradient (7.13°C) -17.87°C BWEC Cooling shell design 08.06.2017 24

Possible 140W (STT worst elect. case) front with front cooling Thermal simulations Possible 140W (STT worst elect. case) front with front cooling Out of scale 57°C Good front protection Less than 0.5°C gradient -25.00 °C -24.00°C Solid angle loss (further from the IP) BWEC Cooling shell design 08.06.2017 25

Straight pipes and elbow Fluid mechanics simulations Straight pipes and elbow 4.00 mbar 23.82 mbar 11.63 mbar BWEC Cooling shell design 08.06.2017 26

Front square connectors Fluid mechanics simulations Front square connectors BWEC Cooling shell design 08.06.2017 27

Front square connectors Fluid mechanics simulations Front square connectors BWEC Cooling shell design 08.06.2017 28

Front square connectors Fluid mechanics simulations Front square connectors BWEC Cooling shell design 08.06.2017 29

Front square connectors Fluid mechanics simulations Front square connectors 35.44 mbar 31.21 mbar 30.28 mbar BWEC Cooling shell design 08.06.2017 30

Fluid mechanics simulations Summary Part Pressure drop/part(mbar) Amount Total Pd (mbar) Straight d = 10 mm 11.63 4 46.52 Straight d = 13 mm 4.00 6 24.00 Elbow d = 10 mm 23.82 95.28 Square conn 1 35.44 2 70.88 Square conn 2 31.21 62.42 Square conn 3 30.28 1 Total 329.38 mbar BWEC Cooling shell design 08.06.2017 31

Fluid mechanics calculations vs. simulations Part Pressure drop (mbar) Amount Total Pd (mbar) Straight d =10 mm 11.37 4 45.48 d = 13 mm 3.99 6 23.94 Elbow d = 10 mm 21.05 84.20 Square conn 1 27.60 2 55.20 Square conn 2 Square conn 3 1 Total 291.62 mbar Part Pressure drop (mbar) Amount Total Pd (mbar) Straight d = 10 mm 11.63 4 46.52 d = 13 mm 4.0 6 24.00 Elbow 23.82 95.28 Square conn 1 35.44 2 70.88 Square conn 2 31.21 62.42 Square conn 3 30.28 1 Total 329.38 mbar BWEC Cooling shell design 08.06.2017 32

Summary and future works 5 What is next? BWEC Cooling shell design 08.06.2017 33

Summary Less than 0.3oC of gradient in the coolant temperature Good homogeneity with front cooling Low pressure drop: Different pressure drop values because of the square parts (simplifications in calculations for complex geometry) Calculations Simulation 291.62 mbar 329.38 mbar BWEC Cooling shell design 08.06.2017 34

Future works Building an outer shell prototype (on process) Make measurements for validating calculations and simulations Tests for front cooling with existing prototype (on process) Design inner shell with the same procedure BWEC Cooling shell design 08.06.2017 35

Any questions? You can write me jjorgeri@uni-mainz.de THANKS! Any questions? You can write me jjorgeri@uni-mainz.de BWEC Cooling shell design 08.06.2017 36

Back Up slides BWEC Cooling shell design 08.06.2017

Front cooling Connectors MP Hole Preparation in Outer shell and MP BWEC Cooling shell design 08.06.2017 B1

Front cooling Parallel circuits (low pressure drop) Preliminary design Parallel circuits (low pressure drop) Different diameter each branch (homogeneity) 3D printed (HDPE) BWEC Cooling shell design 08.06.2017 B2

Simulations Velocity examples BWEC Cooling shell design 08.06.2017 B3

Thermal calculations General inputs BWEC Cooling shell design 08.06.2017 B4

Thermal calculations Example BWEC Cooling shell design 08.06.2017 B5

Thermal calculations Output summary BWEC Cooling shell design 08.06.2017 B6

Fluid mechanic calculations Serial Pressure drop calculator Inputs: Coolant Section´s geometry Length Local elements Flow Valve Height BWEC Cooling shell design 08.06.2017 B7

Fluid mechanic calculations Serial Pressure drop calculator Outputs: Reynolds Laminar/ Turbulent Friction factor Pressure drop Pressure difference BWEC Cooling shell design 08.06.2017 B8

Fluid mechanic calculations Parallel calculator Flow Aim: Constant flow through all branches. Procedure: Change diameter of branches. Flow/4 Flow/4 Flow/4 Flow/4 Flow BWEC Cooling shell design 08.06.2017 B9

Fluid mechanic calculations Parallel calculator Inputs: Coolant Different geometry for sections Lengths Local elements Number of branches Height . BWEC Cooling shell design 08.06.2017 B10

Fluid mechanic calculations Parallel calculator Outputs: Total pressure drop Pressure drop in manifold Different diameters . BWEC Cooling shell design 08.06.2017 B11

Front cooling test Aim: See the effect of different materials in the front cooling Effect of different VIP´s configuration 20mm 2x10mm Validate thermal and fluid mechanic calculation system. . BWEC Cooling shell design 08.06.2017 B12

Front cooling test Layout . Different materials BWEC Cooling shell design 08.06.2017 B13

Cold nitrogen test Layout . Cool down the nitrogen BWEC Cooling shell design 08.06.2017 B14

Dew point at 20°C Calculations BWEC Cooling shell design 08.06.2017

Dew point at 20°C Psychrometric chart BWEC Cooling shell design 08.06.2017 B14

Dew point at 20°C Kapton heating BWEC Cooling shell design 08.06.2017

Distance between pipes All the heat received for the plate is transported by conduction 𝑃 𝑞𝑐 +∆𝑥 = 𝑞𝑐+ 𝜕𝑞 𝜕𝑥 𝑑𝑥+… Q w 𝑞𝑐 +∆𝑥 − 𝑞𝑐= 𝜕𝑞 𝜕𝑥 𝑑𝑥+… 𝑞𝑐 𝑞𝑐 +∆𝑥 t 𝑞𝑐 +∆𝑥 − 𝑞𝑐= 𝜕 𝜕𝑥 −𝑘 𝜕𝑇 𝜕𝑥 𝑑𝑥+… dx x 𝑑 𝑑𝑥 𝑄 𝐶 =𝑃∙𝑤∙𝑑𝑥 (𝑞𝑐 +∆𝑥 −𝑞𝑐)∙𝑡∙𝑤=𝑃∙𝑤∙𝑑𝑥 −𝑘∙𝑡∙𝑤∙ 𝑑 2 𝑇 𝑑 𝑥 2 𝑑𝑥=𝑃∙𝑤∙𝑑𝑥 𝑑 2 𝑇 𝑑 𝑥 2 =− 𝑃 𝑘∙𝑡 BWEC Cooling shell design 08.06.2017 B14

Distance between pipes Boundary conditions Symmetry: Q(L/2)=0 T(0)=Te 𝑇 𝑥 =− 𝑃 2∙𝑘∙𝑡 ∙ 𝑥 2 +𝐴∙𝑥+𝐵 𝑇 0 =− 𝑃 2∙𝑘∙𝑡 ∙ 0 2 +𝐴∙0+𝐵→𝐵=𝑇𝑒 𝜕𝑇 𝜕𝑥 𝐿/2 =− 2𝑃 2∙𝑘∙𝑡 ∙ 𝐿 2 +𝐴=0→𝐴= 𝑃𝐿 2𝑘𝑡 𝑑 2 𝑇 𝑑 𝑥 2 =− 𝑃 𝑘∙𝑡 Te x L/2 BWEC Cooling shell design 08.06.2017 B14

Distance between pipes Te 𝑇 𝑥 =− 𝑃 2∙𝑘∙𝑡 ∙ 𝑥 2 + 𝑃𝐿 2∙𝑘∙𝑡 ∙𝑥+𝑇𝑒 x L/2 We want T(L/2) ≤ Te+0,5 𝑇 𝐿/2 =− 𝑃 𝐿 2 8∙𝑘∙𝑡 + 𝑃 𝐿 2 4∙𝑘∙𝑡 +𝑇𝑒=𝑇𝑒+0,5 𝑃 𝐿 2 8∙𝑘∙𝑡 +𝑇𝑒= 𝑇𝑒+0,5 𝑃 𝐿 2 8∙𝑘∙𝑡 =∆𝑇→𝐿= 8𝑘𝑡∆𝑇 𝑃 BWEC Cooling shell design 08.06.2017 B14

Thermal simulations Out of scale BWEC Cooling shell design 08.06.2017 B14

Thermal simulations Out of scale BWEC Cooling shell design 08.06.2017 B14

Leakless mode Calorimeter Pressure Height Total static energy Losses