The MEG Experiment at PSI: a sensitive search for m eg decay

Slides:



Advertisements
Similar presentations
1 A.Baldini 23 sett CSN I Lecce Stato dellesperimento MEG Stato dellesperimento (LXe, T.C., Trigger a parte) Schedule Budget MoU Richieste finanziarie.
Advertisements

MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Status of the MEG Experiment W. Ootani ICEPP, University of Tokyo for the MEG collaboration.
Satoshi Mihara for the   e  collaboration, BV33 at PSI, Jan 2002 Report on the Progress for   e  Experiment Satoshi Mihara ICEPP, Univ. of Tokyo.
LEPTON-FLAVOUR VIOLATION AND NEUTRINO OSCILLATIONS
Giovanni Signorelli, INFN, Scuola Normale and Dipartimento di Fisica, Pisa PSI, February LXe (part B) Giovanni Signorelli Istituto Nazionale di.
A. Baldini PSI July 04 General Introduction Work done in the past 4 months presented in the individual sub-detectors talks: highlights Construction is.
Shuei YAMADA, ICEPP, University of tau04 Nara, Sep. 15, Search for the Lepton Flavor Violating Decay  e  in the MEG Experiment Shuei YAMADA.
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
M. Grassi – INFN Pisa La Thuile - March 15 th, A sensitive search fordecay: the MEG experiment Marco Grassi INFN, Pisa on behalf of the MEG Collaboration.
19 April 2006Fabrizio Cei1 The Liquid Xenon Calorimeter of the MEG Experiment Fabrizio Cei INFN and Universita’ di Pisa Incontri di Fisica delle Alte Energie.
March 2002, JINR Dubna1 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Status of the MEG Experiment  → e  On behalf of the MEG collaboration Stefan Ritt Paul Scherrer Institute, Switzerland.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
The MEG Experiment T. Mori for the MEG Collaboration.
Current status of MEG Experiment Yasuko HISAMATSU ICEPP, The Univ. of Tokyo ICEPP Symposium.
First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex: v1 18 Aug 2009.
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
g beam test of the Liquid Xe calorimeter for the MEG experiment
MEG  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
MEG Experiment Data Analysis: a status report
An Active TARget for MEG-II, a status report
Status of MEG-I physics analysis
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
The Electromagnetic calorimeter of the MEG Experiment
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
A personal overview of particle physics activities at PSI
-LFV and related topics
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
(particle) physics with a new high intensity low energy muon source
Stefan Ritt Paul Scherrer Institute, Switzerland
Status of the experiment in Italy
Liquid Xenon Scintillation Detector for the MEG Experiment
The MEG Detector to Search for m -> eg Decays
The Trigger System Marco Grassi INFN - Pisa
MEG II実験 液体キセノン検出器の建設状況
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
COherent Muon to Electron Transition (COMET)
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

The MEG Experiment at PSI: a sensitive search for m eg decay Fabrizio Cei INFN and University of Pisa XV Incontri sulla Fisica delle Alte Energie Lecce, 23-25 April 2003

Outline Physics motivations: The   e signature: SUSY indications; Connection with neutrino oscillations. The   e signature: Signal & Background. The experimental setup: The muon beam; The positron spectrometer; The timing counter; The Liquid Xenon e.m. calorimeter; Trigger & Electronics. Conclusions: Sensitivity; Time profile. Lecce, April 24, 2003 Fabrizio Cei

Physics Motivations In the Standard Model with massive Dirac neutrinos Lepton Flavour Violation processes (as m  eg, t  eg, m  eee, m  e) are predicted at immeasurably small levels . However, Super Symmetric Theories predict such processes at much more reasonable rates. Since the SM background is negligible, processes like m  eg are clear evidences for Super Symmetry. Problem: are such rates experimentally observable ? Lecce, April 24, 2003 Fabrizio Cei

SUSY Indications Some predictions: LFV processes especially sensitive to SSM grand unified theories (SUSY-GUT). LFV induced by finite slepton mixing through radiative corrections. Some predictions: SUSY SU(5) BR (m  eg)  10-14  10-13 SUSY SO(10) BRSO(10)  100 BRSU(5) (R. Barbieri et al., Phys. Lett. B338(1994) 212 R. Barbieri et al., Nucl. Phys. B445(1995) 215) Lecce, April 24, 2003 Fabrizio Cei

Predictions of m  eg BR in SU(5) Models Experimental Bound J. Hisano et al., Phys. Lett. B391 (1997) 341 Goal of MEG Experiment Small (< 10) tan b values are highly disfavoured by recent combined LEP data. (ALEPH, DELPHI, L3 & OPAL Collaborations, hep-ex/0107030) Lecce, April 24, 2003 Fabrizio Cei

Connection with n-oscillations Additional contribution to slepton mixing from V21, matrix element responsible for solar neutrino deficit. (J. Hisano & N. Nomura, Phys. Rev. D59 (1999) 116005) Our goal Experimental bound tan(b) = 30O tan(b) = 0O Largely favoured and confirmed by Kamland All solar n experiments combined Lecce, April 24, 2003 Fabrizio Cei

Previous m  eg Searches Other LFV searches Lab. Year Upper limit Experiment or Authors PSI 1977 < 1.0  10-9 A. Van der Schaaf et al. TRIUMF < 3.6  10-9 P. Depommier et al. LANL 1979 < 1.7  10-10 W.W. Kinnison et al. 1986 < 4.9  10-11 Crystal Box 1999 < 1.2  10-11 MEGA ~2005 ~ 10-13 MEG The MEG experiment aims to gain two orders of magnitude in the upper limit (not a simple experimental challenge!). MEG Lecce, April 24, 2003 Fabrizio Cei

The MEG Collaboration Lecce, April 24, 2003 Fabrizio Cei INFN & Lecce University G. Cataldi, C. Chiri, P. Creti, F. Grancagnolo, M. Panareo, S. Spagnolo INFN & Pisa University A. Baldini*, C. Bemporad, F.Cei, M.Grassi, F. Morsani, D. Nicolo’, R. Pazzi, F. Raffaelli, F. Sergiampietri, G. Signorelli INFN & Pavia University A.de Bari, P. Cattaneo, G. Cecchet, G. Nardo’, M. Rossella INFN & Genova University S. Dussoni, F. Gatti, D. Pergolesi, R. Valle INFN Roma I D. Zanello ICEPP, University of Tokyo T. Mashimo, S. Mihara, T. Mitsuhashi, T. Mori*, H. Nishiguchi, W. Ootani, K. Ozone, T. Saeki, R. Sawada, S. Yamashita KEK, Tsukuba T. Haruyama, A. Maki, Y. Makida, A. Yamamoto, K. Yoshimura Osaka University Y. Kuno Waseda University T. Doke, J. Kikuchi, H. Okada, S. Suzuki, K. Terasawa, M. Yamashita, T. Yoshimura PSI, Villigen J. Egger, P. Kettle, M. Hildebrandt, S. Ritt Budker Institute, Novosibirsk L.M. Barkov, A.A. Grebenuk, D.G. Grigoriev, B, Khazin, N.M. Ryskulov * Spokepersons Lecce, April 24, 2003 Fabrizio Cei

(muon radiative decay) Signal and Background Background Signal   e g “Accidental”   e n n   e g n n ee  g g eZ  eZ g “Prompt” m  e g n n (muon radiative decay) e+ + g e+ + g n e+ + n qeg = 180° Ee = Eg = 52.8 MeV te = tg g Lecce, April 24, 2003 Fabrizio Cei

Experimental Strategy Use a high-intensity muon beam and m-decay at rest; Measure g time, energy and angle by using a fast & high-resolution e.m. calorimeter; Measure e+ momentum by using a high-resolution spectrometer; Measure e+ time by using fast counters (scintillator bars); Use a trigger scheme based on the e+-g coincidence. Lecce, April 24, 2003 Fabrizio Cei

A simulated event 52.8 MeV photon 52.8 MeV positron Lecce, April 24, 2003 Fabrizio Cei

Required Performances Experimental sensitivity limited by spill-in of background (especially accidental) into signal region  high resolution measurements are needed. The accidental BR is To obtain BR (m  eg)  10-13 we must have BRacc  3•10-14 and this requires: FWHM Exp./Lab Year DEe/Ee (%) DEg /Eg Dteg (ns) Dqeg (mrad) Stop rate (s-1) Duty cycle (%) BR (90% CL) SIN 1977 8.7 9.3 1.4 - 5 x 105 100 3.6 x 10-9 TRIUMF 10 6.7 2 x 105 1 x 10-9 LANL 1979 8.8 8 1.9 37 2.4 x 105 6.4 1.7 x 10-10 Crystal Box 1986 1.3 87 4 x 105 (6..9) 4.9 x 10-11 MEGA 1999 1.2 4.5 1.6 17 2.5 x 108 (6..7) 1.2 x 10-11 MEG 2005 0.8 4 0.15 19 2.5 x 107 1 x 10-13 Lecce, April 24, 2003 Fabrizio Cei

Detector Building Switzerland Russia Italy Japan Drift Chambers, Readout & DAQ Russia Manpower, Muons transport solenoid Italy e+ counter (Ge + Pv), Trigger (Pi, Le), Splitter (Le), LXe Calorimeter (Pi, Le) Japan LXe Calorimeter, Superconducting Solenoid Lecce, April 24, 2003 Fabrizio Cei

The Paul Scherrer Institute Experimental Hall The most powerful machine in the world; Proton energy 590 MeV; Nominal operation current 1.8 mA Lecce, April 24, 2003 Fabrizio Cei

The Muon Beam It exists; It provides continuous > 108 +/s (with e+ contamination) on 5x5 mm2; Two separate configurations of the pE5 beam line (U & Z); Muon momentum 29 MeV/c. Primary proton beam Lecce, April 24, 2003 Fabrizio Cei

Beam Line Tests Goal: optimize the beam elements in order to achieve: a) a good m/e separation  mass selection device (Wien filter); b) a good coupling between beam and spectrometer  solenoidal magnet; c) a high intensity of stopping muons in a spot  5x5 mm2  degrader to reduce the muon momentum before a 150 mm target. Lecce, April 24, 2003 Fabrizio Cei

Results Rm (after filter) m/e separation Rm (total) Rm (after filter) m/e separation Spot size sV 6.5 mm, sH 5.5 mm (U) Lecce, April 24, 2003 Fabrizio Cei

The Positron Spectrometer COnstant Bending RAdius (COBRA) spectrometer Constant bending radius independent of emission angles Gradient field Uniform field High pT positrons quickly swept out Gradient field Uniform field Lecce, April 24, 2003 Fabrizio Cei

Magnetic Field Longitudinal Profile (R = 0) Radial Profile Needed < 50 G: OK) Lecce, April 24, 2003 Fabrizio Cei

Solenoids and Coils Central coil Bc = 1.26 T current = 359 A; Five coils with three different diameters; Compensation coils to suppress the stray field around the Liquid Xenon detector; High-strength aluminium stabilized superconductor  thin magnet (1.46 cm Aluminium, 0.2 X0); “Crash” Tests completed; Winding completed @TOSHIBA; Magnet ready to be shipped at PSI within this year. Lecce, April 24, 2003 Fabrizio Cei

(X,Y) ~ 200 mm (drift time); (Z) ~ 300 mm; (t) ~ 10 ns Positron Tracker 17 chamber sectors aligned radially with 10° intervals and 20 wires each; Two staggered arrays of drift cells; Chamber gas: He-C2H6 mixture (50/50) to reduce multiple scattering; Vernier pattern made of 15 mm kapton foils to measure z-position by charge division. (X,Y) ~ 200 mm (drift time); (Z) ~ 300 mm; (t) ~ 10 ns Lecce, April 24, 2003 Fabrizio Cei

Drift Chambers R & D First results with a small-size prototype @ Tokyo university (90Sr source, no magnetic field) Full-size prototype @ PSI; test in November (cosmic muons & 90Sr source, magnetic field); Improved vernier strips structure (uniform resolution); Summary of Drift Chamber simulation. Lecce, April 24, 2003 Fabrizio Cei

Positron Timing Counter BC404 scintillator Two layers of scintillation counters read by PMTs at right angles with each other. Outer: mainly timing measurement Inner: mainly trigger information Goal: timing resolution 100 ps FWHM Lecce, April 24, 2003 Fabrizio Cei

Timing Counter R & D Timing resolution measurement: COsmic Ray TESt Facility (CORTES) 4 small counters + 8 MSGC + 1 scintillator bar (1 cm thick) Measured resolution t improves as ~1/√Npe  2 cm thick to get 100 ps FWHM resolution New design in progress; expected full simulation of geometry and light collection and prototype tests in October/November; final design and building in 2004. Lecce, April 24, 2003 Fabrizio Cei

Liquid Xenon Calorimeter Liq. Xe H.V. Vacuum for thermal insulation Al Honeycomb window PMT Refrigerator Cooling pipe Signals filler Plastic 1.5m 800 l of Liquid Xenon equipped with  800 PMTs; Homogeneous detector; Only scintillation light; Large light yield (~ NaI). Liquid Xenon properties Experimental check Lecce, April 24, 2003 Fabrizio Cei

LXe Calorimeter Performances Full MC simulation of Liquid Xenon behaviour and calorimeter response. Position resolution: corresponding to: angular resolution (practically independent of light absorption length). Z-coordinate resolution (depth of interaction point; important for timing resolution  preliminary measurements later): Energy resolution strongly depends on optical properties of Liquid Xenon reconstruction algorithms needed to correct for non homogeneities. Lecce, April 24, 2003 Fabrizio Cei

Energy Reconstruction FWHM(E)/E (%) FWHM  4.1 % Asymptotic value FWHM  2.5 % for labs  labs = 100 cm Lecce, April 24, 2003 Fabrizio Cei

Liquid Xenon Calorimeter Prototype The Large Prototype (LP) 40 x 40 x 50 cm3; 228 PMTs, 100 litres Liquid Xenon (the largest in the World). Purposes: Test cryogenic operations on a long term and on a large volume; Measure the Liquid Xenon properties; Check the reconstruction methods; Measure the Energy, Position and Timing resolutions with: a) Cosmic rays; b) -sources; c) 60 MeV eˉ from KSR storage ring; d) 40 MeV  from TERAS Compton Backscattering; e) e+ and 50 MeV  from p° at PSI. Planned this year Lecce, April 24, 2003 Fabrizio Cei

The LP from “inside” FRONT face LEDs -source FRONT face -sources and LEDs for PMT calibration and monitoring Lecce, April 24, 2003 Fabrizio Cei

Measurement of LXe Optical Properties First tests showed a number of scintillation photons much lower than expected. It improved with Xenon purification: Oxysorb + gas getter + re-circulation (took time). There was a strong absorption due to contaminants (mainly H2O, ~ 3 ppm). March 2002 Now labs> 1 m @ 90% C.L. Lecce, April 24, 2003 Fabrizio Cei

Improvement of labs with time We observed an improvement both in comparison with MC simulation and GXe data No Monte Carlo !! Increase with time Lecce, April 24, 2003 Fabrizio Cei

Radioactive Background in LP -trigger with 5106 gain; Geometrical cuts to exclude -sources; Energy scale: -source 208Tl (2.59±0.06) MeV 40K (1.42 ± 0.06) MeV Other lines ?? uniform on the front face; few 10 min (with non-dedicated trigger); nice calibration for low energy ’s. 40K (1.461 MeV) 208Tl (2.614 MeV) Never seen before ! Lecce, April 24, 2003 Fabrizio Cei

Timing Resolution Measurements our goal Dt = (Dtz2 + Dtsc2)1/2 = (802 + 602)1/2 ps = 100 ps (FWHM) Dtz Time-jitter due to g interaction point (MC: ) Dtsc Scintillation time and photon statistics Measurement of Dtsc2 with 60 MeV electron beam @ Kyoto Sincrotron Ring (N.B. Electron energy spectrum degraded by materials in front of the detector) 52.8 MeV weighted average of the PMT TDCs time-walk corrected; Dtsc vs number of photoelectrons; extrapolation @ 52.8 MeV is ok; new PMT with improved QE: 5 10 % 5 % 10 % Lecce, April 24, 2003 Fabrizio Cei

PMT characterization: Cryogenic Test Facility in Pisa Full design and mechanical drawings completed; Cryostat delivered at the beginning of april; Orders made for dry UHV pumping group, leak detector, UHV components, cryogenic bottle, PMT’s …; some of them already received; Laboratory in preparation. Lecce, April 24, 2003 Fabrizio Cei

Trigger Based on simple quantities:  energy (QSUM); 1 board 2 VME 6U 1 VME 9U Type2 LXe inner face (312 PMT) . . . 20 boards 20 x 48 Type1 16 3 2 boards 10 boards 10 x 48 LXe lateral faces (488 PMT: 4:1 fan-in) 12 boards 12 x 48 Timing counters (160 PMT) 2 x 48 4 x 48 Based on simple quantities:  energy (QSUM); e+ -  coincidence in time and direction; LXe & Timing Counter information (no DC). Built on a FADC-FPGA architecture; More complex algorithms implementable. Lecce, April 24, 2003 Fabrizio Cei

Trigger Performances Trigger Status Beam rate 108 s-1 Fast LXe energy sum > 45 MeV 2103 s-1 g interaction point (PMT of max charge) e+ hit point in timing counter time correlation g – e+ 200 s-1 angular correlation g – e+ 20 s-1 Trigger Status Design and simulation of type1 board completed; Prototype board delivered by late spring. Lecce, April 24, 2003 Fabrizio Cei

Prototypes delivered in autumn Readout Electronics Waveform digitising for all channels; Custom domino sampling chip designed @ PSI; Cost per DSC ~ 1 US$; 2.5 GHz sampling speed @ 40 ps timing resolution; Sampling depth 1024 bins; Readout similar to trigger. Prototypes delivered in autumn Lecce, April 24, 2003 Fabrizio Cei

Sensitivity T = 2.6 • 107 s Rm = 0.3 • 108 m+/s Detector parameters W/4p = 0.09 ee  0.9 esel  (0.9)3 = 0.7 eg  0.6 Signal Nsig = BR • T • Rm • W/4p • ee esel eg Single Event Sensitivity SES = 1/(T • Rm • W/4p • ee esel eg )  4 • 10-14 Correlated Background BRcorr  3 • 10-15 Accidental Background BRacc  Rm • DEe • (DEg)2 • (Dqeg)2 • Dteg  3 • 10-14 Upper Limit @ 90 % C.L. BR (m  e g)  1 • 10-13 Discovery 4 events (P = 2 • 10-3) correspond to BR = 2 • 10-13 Cuts @ 1.4 FWHM Lecce, April 24, 2003 Fabrizio Cei

Conclusions and Time Schedule The experiment may provide a clean indication of New Physics (SUSY); Measurements and detector simulation make us confident that we can reach a SES of 4 • 10-14 for meg ( BR  10-13); Final prototypes will be ready and measured within November 2003: Large Prototype for photon energy, position and timing resolutions; Full scale Drift Chamber; -Transport and degrader-target. Experiment approved by INFN-CSN1 at beginning of April. Tentative time schedule http://meg.psi.ch http://meg.pi.infn.it http://meg.icepp.s.u-tokyo.ac.jp 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Planning R & D Assembly Data Taking Now LoI Proposal Revised document Lecce, April 24, 2003 Fabrizio Cei

Lxe Calorimeter Calibration p-p  p0n p0 (28 MeV/c)  g g 54.9 MeV < E(g) < 82.9 MeV q Eg Requiring q > 170o FWHM = 1.3 MeV Requiring q > 175o FWHM = 0.3 MeV Eg p0 g Eg p- 170o 1.3 MeV for q>170o 0.3 MeV for q>175o 54.9 MeV 82.9 MeV g 175o Am-Be g source 4.43 MeV p-p  g n E(g) = 129.4 MeV q Eg Lecce, April 24, 2003 Fabrizio Cei

LXe Calorimeter Calibration (2) m  egnn Ee > 0.85; Eg > 0.8; qeg > 120o Crystal box PRD 38 (1988) 2077 te-tg 150 ps 1 5 ~ 6 0.3 ~ 0.4 108 m/s Accidental background R.Tribble’s talk at Univ. of Tokyo Oct. 1999 107 m/s Signal 1/10 Background <1/100 Accidental background Lecce, April 24, 2003 Fabrizio Cei