Statistical earthquake forecasts

Slides:



Advertisements
Similar presentations
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Advertisements

Extreme Earthquakes: Thoughts on Statistics and Physics Max Werner 29 April 2008 Extremes Meeting Lausanne.
Correlation and Autocorrelation
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , EARTHQUAKE.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , EARTHQUAKE PREDICTABILITY.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Testing.
Simplified algorithms for calculating double-couple rotation Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles.
Earthquake spatial distribution: the correlation dimension (AGU2006 Fall, NG43B-1158) Yan Y. Kagan Department of Earth and Space Sciences, University of.
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , GLOBAL EARTHQUAKE.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Full.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Epidemic Type Earthquake Sequence (ETES) model  Seismicity rate = "background" + "aftershocks":  Magnitude distribution: uniform G.R. law with b=1 (Fig.
Accelerating Moment Release in Modified Stress Release Models of Regional Seismicity Steven C. Jaume´, Department of Geology, College of Charleston, Charleston,
Earthquake predictability measurement: information score and error diagram Yan Y. Kagan Department of Earth and Space Sciences, University of California.
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan, David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Forecast.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Global.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Rules of the Western.
Geometric characterization of nodal domains Y. Elon, C. Joas, S. Gnutzman and U. Smilansky Non-regular surfaces and random wave ensembles General scope.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Statistical.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Earthquake.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , STATISTICAL.
Lecture II-2: Probability Review
Statistical Methods For Engineers ChE 477 (UO Lab) Larry Baxter & Stan Harding Brigham Young University.
FULL EARTH HIGH-RESOLUTION EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los.
Estimation of Statistical Parameters
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Toward urgent forecasting of aftershock hazard: Simultaneous estimation of b-value of the Gutenberg-Richter ’ s law of the magnitude frequency and changing.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Tohoku.
Random stress and Omori's law Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract We consider two statistical.
Yan Y. Kagan & David D. Jackson Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
TOHOKU EARTHQUAKE: A SURPRISE? Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract.
ECE-7000: Nonlinear Dynamical Systems Overfitting and model costs Overfitting  The more free parameters a model has, the better it can be adapted.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Evaluation.
2. MOTIVATION The distribution of interevent times of aftershocks suggests that they obey a Self Organized process (Bak et al, 2002). Numerical models.
GLOBAL EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract We.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Earthquake size distribution: power-law with exponent ? Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract.
Spatial Smoothing and Multiple Comparisons Correction for Dummies Alexa Morcom, Matthew Brett Acknowledgements.
A proposed triggering/clustering model for the current WGCEP Karen Felzer USGS, Pasadena Seismogram from Peng et al., in press.
California Earthquake Rupture Model Satisfying Accepted Scaling Laws (SCEC 2010, 1-129) David Jackson, Yan Kagan and Qi Wang Department of Earth and Space.
CHAPTER 2.3 PROBABILITY DISTRIBUTIONS. 2.3 GAUSSIAN OR NORMAL ERROR DISTRIBUTION  The Gaussian distribution is an approximation to the binomial distribution.
Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , SHORT-TERM PROPERTIES.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , STATISTICAL SEISMOLOGY–
Multiple comparisons problem and solutions James M. Kilner
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
SHORT- AND LONG-TERM EARTHQUAKE FORECASTS FOR CALIFORNIA AND NEVADA Kagan, Y. Y. and D. D. Jackson Department of Earth and Space Sciences, University of.
Random stress and Omori's law Yan Y. Kagan Department of Earth and Space Sciences, University of California Los Angeles Abstract We consider two statistical.
A new prior distribution of a Bayesian forecast model for small repeating earthquakes in the subduction zone along the Japan Trench Masami Okada (MRI,
Abstract The space-time epidemic-type aftershock sequence (ETAS) model is a stochastic process in which seismicity is classified into background and clustering.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
Fundamentals of Data Analysis Lecture 10 Correlation and regression.
Global smoothed seismicity models and test results
Chapter 11: Simple Linear Regression
Philip J. Maechling (SCEC) September 13, 2015
Maximum Earthquake Size for Subduction Zones
Computer Vision Lecture 4: Color
Stochastic Hydrology Hydrological Frequency Analysis (II) LMRD-based GOF tests Prof. Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering.
Tohoku earthquake: A surprise?
R. Console, M. Murru, F. Catalli
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
MGS 3100 Business Analysis Regression Feb 18, 2016
CHAPTER – 1.2 UNCERTAINTIES IN MEASUREMENTS.
Presentation transcript:

Statistical earthquake forecasts Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA 90095-1567, ykagan@ucla.edu, http://eq.ess.ucla.edu/~kagan.html Statistical earthquake forecasts http://moho.ess.ucla.edu/~kagan/itp12.ppt

Outline of the Talk Statistical analysis of earthquake occurrence – earthquake numbers, spatial scaling, size, time, space, and focal mechanism orientation statistical distributions. Current global earthquake forecasts and their testing, RELM/CSEP projects. Long- and short-term seismicity rate forecasts in NW Pacific (Tohoku area) region.

Earthquake Phenomenology Modern earthquake catalogs include origin time, hypocenter location, and second-rank seismic moment tensor for each earthquake. The DC tensor is symmetric, traceless, with zero determinant: hence it has only four degrees of freedom -- one for the norm of the tensor and three for the 3-D orientation of the earthquake focal mechanism. An earthquake occurrence is considered to be a stochastic, tensor-valued, multidimensional, point process.

GCMT catalog of shallow earthquakes 1976-2005

World seismicity: 1990 – 2000 (PDE)

Statistical studies of earthquake catalogs -- time, size, space, focal mechanism Catalogs are a major source of information on earthquake occurrence. Since late 19-th century certain statistical features were established: Omori (1894) studied temporal distribution; Gutenberg & Richter (1941; 1944) -- size distribution. Quantitative investigations of spatial patterns started late (Kagan & Knopoff, 1980). Focal mechanism investigations (Kagan, 1982; 1991; 2009; 2012)

Kagan, Y. Y. , 2002. Aftershock zone scaling, Bull. Seismol. Soc. Amer

Advantages of this distribution: Simple (only one more parameter than G-R); Has a finite integrated moment (unlike G-R) for b < 1; Fits global subcatalogs slightly better than the gamma distribution.

not to be taken literally! (“a large number”) 95%-confidence lower limit threshold magnitude 95%-confidence upper limit 95%-confidence lower limit

The maximum-likelihood method is used to determine the parameters of these tapered G-R distributions (and their uncertainties): An ideal case (both parameters determined) A typical case (corner magnitude unbounded from above)

Kagan’s [1999] hypothesis of uniform b still stands. Review of results on spectral slope, b: Although there are variations, none is significant with 95%-confidence. Kagan’s [1999] hypothesis of uniform b still stands.

Gutenberg-Richter law For the last 20 years a paper has been published every 10 days which substantially analyses b-values. Theoretical analysis of earthquake occurrence (Vere-Jones, 1976, 1977) suggests that, given its branching nature, the exponent β of earthquake size distribution should be identical to 1/2. The same values of power-law exponents are derived for percolation and self-organized criticality (SOC) processes in a high-dimensional space (Kagan, 1991, p. 132). The best measurements of beta-value yields 0.63 (Kagan, 2002; Bird and Kagan, 2004), i.e. about 25% higher than 0.5.

Gutenberg-Richter law (cont.) We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter β of the power-law distribution of earthquake sizes. Magnitude errors increase beta-value by 1-3% (Kagan, 2000, 2002, 2003), aftershocks increase it by 10-15%, focal mechanism incoherence by 2-7%. The centroid depth distribution also should influence the β-value by increasing it by 2–6%. Therefore, we conjecture that beta- (or b-) value variations are property of catalogs not of earthquakes.

Crystal plasticity Recent experimental and theoretical investigations have demonstrated that crystal plasticity is characterized by large intrinsic spatiotemporal fluctuations with scale invariant characteristics similar to Gutenberg-Richter law. In other words, deformation proceeds through intermittent bursts (micro-earthquakes) with power-law size distributions (Zaiser, 2006).

Earthquake size distribution CONJECTURE: If the hypothesis that the power-law exponent is a universal constant equal 1/2 and the corner moment is variable is correct, then it would provide a new theoretical approach to features of earthquake occurrence and account for the transition from brittle to plastic deformation (Kagan, TECTO, 2010).

Omori’s law (short-term time dependence) C-value measurements yielded values ranging from seconds to days (Kagan, 2004). Its variation is believed to provide evidence of physical mechanism for the earthquake rupture process. However, Enescu et al. (2009) and other careful measurements suggest that C=0, therefore the non-zero C-value also is a property of catalogs, not of earthquakes.

Most often measured value of P is around 1.0. Omori’s law (cont.) Most often measured value of P is around 1.0. If the branching property of earthquake occurrence is taken into account , the P-value would increase from ~1.0 to ~1.5 (Kagan and Knopoff, 1981). P=1.5 is suggested by the Inverse Gaussian distribution (Brownian Passage Time) or at the short time intervals by the Levy distribution.

Kagan, Y. Y., and Knopoff, L., 1987. Random stress and earthquake statistics: Time dependence, Geophys. J. R. astr. Soc., 88, 723-731.

Random stress and Omori's law, Kagan, Y. Y., 2011. Random stress and Omori's law, Geophys. J. Int., GJI-10-0683, 186(3), 1347-1364, doi: 10.1111/j.1365-246X.2011.05114.x

Spatial distribution of earthquakes We measure distances between pairs, triplets, and quadruplets of events. The distribution of distances, triangle areas, and tetrahedron volumes turns out to be fractal, i.e., power-law. The power-law exponent depends on catalog length, location errors, depth distribution of earthquakes. All this makes statistical analysis difficult.

Four-point functions: Spatial moments: Two- Three- and Four-point functions: Distribution of distances (D), surface areas (S), and volumes (V) of point simplexes is studied. The probabilities are approximately 1/D, 1/S, and 1/V.

Spatial distribution of earthquakes (cont.) Pair distance distribution is fractal with the value of the fractal correlation dimension of 2.25 for shallow seismicity (Kagan, 2007). There is no known mechanism that would explain this value, the only limits are 3.0 > delta > 2.0.

Focal mechanism distribution It also seems to be controlled by a fractal type distribution, but because of high dimensionality and complex topological properties (non-commutative group of 3-D rotations) very little theoretical advance can be made. It seems possible that tectonic earthquakes are pure double-couples (Kagan, 2009).

Focal mechanisms distribution (cont.) Rotation between pairs of focal mechanisms could be evaluated using quaternion algebra: 3-D rotation is equivalent to multiplication of normalized quaternions (Kagan, 1991). Because of focal mechanism symmetry four rotations of less than 180 degrees exist. We usually select the minimal rotation. Distribution of rotation angles is well approximated by the rotational Cauchy law.

Correlations of earthquake focal mechanisms, Kagan, Y. Y., 1992. Correlations of earthquake focal mechanisms, Geophys. J. Int., 110, 305-320. Upper picture -- distance 0-50 km. Lower picture -- distance 400-500 km.

Statistical analysis conclusions The major theoretical challenge in describing earthquake occurrence is to create scale-invariant models of stochastic processes, and to describe geometrical/topological and group-theoretical properties of stochastic fractal tensor-valued fields (stress/strain, earthquake focal mechanisms). It needs to be done in order to connect phenomenological statistical results and to attempt earthquake occurrence modeling with a non-linear theory appropriate for large deformations. The statistical results can also be used to evaluate seismic hazard and to reprocess earthquake catalog data in order to decrease their uncertainties.

Earthquake rate forecasting The fractal dimension of earthquake process is lower than the embedding dimension: Space – 2.2 in 3D,Time – 0.5 in 1D. This allows us to forecast rate of earthquake occurrence – specify regions of high probability and use temporal clustering for short-term forecast -- evaluating possibility of new event. Long-term forecast: Spatial smoothing kernel is optimized by using first temporal part of a catalog to forecast its second part.

Long-term earthquake rate based on PDE catalog 1969-present. Forecast: Long-term earthquake rate based on PDE catalog 1969-present. 0.1 x 0.1 degree, Magnitude M>=5.0

Short-term earthquake rate based on PDE catalog 1969-present. Forecast: Short-term earthquake rate based on PDE catalog 1969-present. 0.1 x 0.1 degree, Magnitude M>=5.0

Kagan, Y. Y., and D. D. Jackson, 1995. New seismic gap hypothesis: Five years after, J. Geophys. Res., 100, 3943-3959. N test (events number) L test (events location likelihood) R test (likelihood comparison of models)

Jackson, D. D., and Y. Y. Kagan, 1999. Testable earthquake forecasts for 1999, Seism. Res. Lett., 70, 393-403. Combined long- and short-term forecast for north- and south-western Pacific area

Error diagram tau, nu for global long-term seismicity (M > 5 Error diagram tau, nu for global long-term seismicity (M > 5.0) forecast. Solid black line -- the strategy of random guess. Solid thick red diagonal line is a curve for the global forecast. Blue line is earthquake distribution from the PDE catalog in 2004-2006 (forecast); magenta line corresponds to earthquake distribution from the PDE catalog in 1969-2003

Earthquake forecast conclusions We present an earthquake forecast program which quantitatively predicts both long- and short-term earthquake probabilities. The program is numerically and rigorously testable both retrospectively and prospectively as done by CSEP worldwide, as well as in California, Italy, Japan, New Zealand, etc. It is ready to be implemented as a technological solution for earthquake hazard forecasting and early warning.

Tohoku M9 earthquake and tsunami

END Thank you

Abstract Earthquake occurrence exhibits scale-invariant statistical properties: (a) Earthquake size distribution is a power-law (the Gutenberg-Richter relation for magnitudes or the Pareto distribution for seismic moment). Preservation of energy principle requires that the distribution should be limited on the high side; thus we use the generalized gamma or tapered Pareto distribution. The observational value of the distribution index is about 0.65. However, it can be shown that empirical evaluation is upward biased, and the index of 1/2, predicted by theoretical arguments, is likely to be its proper value. The corner (maximum) moment has an universal value for shallow earthquakes occurring in subduction zones. We also determined the corner moment values for 8 other tectonic zones. (b) Earthquake occurrence has a power-law temporal decay of the rate of the aftershock and foreshock occurrence (Omori's law), with the index 0.5 for shallow earthquakes. The short-term clustering of large earthquakes is followed by a transition to the Poisson occurrence rate. In the subduction zones this transition occurs (depending on the deformation rate) after 7-15 years, whereas in active continents or plate-interiors the transition occurs after decades or even centuries. (c) The spatial distribution of earthquakes is fractal: the correlation dimension of earthquake hypocenters is equal to 2.2 for shallow earthquakes. (d) The stochastic 3-D disorientation of earthquake focal mechanisms is approximated by the rotational Cauchy distribution.

Abstract (cont.) On the basis of our statistical studies, since 1977 we have developed statistical short- and long-term earthquake forecasts to predict earthquake rate per unit area, time, and magnitude. The forecasts are based on smoothed maps of past seismicity and assume spatial and temporal clustering. Our recent program forecasts earthquakes on a 0.1 degree grid for a global region 90N--90S latitude. For this purpose we use the PDE catalog that reports many smaller quakes (M>=5.0). For the long-term forecast we test two types of smoothing kernels based on the power-law and on the spherical Fisher distribution. We employ adaptive kernel smoothing which improves our forecast in seismically quiet areas. Our forecasts can be tested within a relatively short time period since smaller events occur with greater frequency. The forecast efficiency can be measured by likelihood scores expressed as the average probability gains per earthquake compared to the spatially or temporally uniform Poisson distribution. The other method uses the error diagram to display the forecasted point density and the point events.

Error diagram tau, nu for global long-term seismicity (M > 5 Error diagram tau, nu for global long-term seismicity (M > 5.0) forecast. Solid black line -- the strategy of random guess. Solid thick red diagonal line is a curve for the global forecast. Blue line is earthquake distribution from the PDE catalog in 2004-2006 (forecast); magenta line corresponds to earthquake distribution from the PDE catalog in 1969-2003

Table of earthquake pairs, M>=7.5

http://bemlar.ism.ac.jp/wiki/index.php/Bird%27s_Zones

Statistical studies of earthquake catalogs -- moment tensor Kostrov (1974) proposed that earthquake is described by a second-rank tensor. Gilbert & Dziewonski (1975) first obtained tensor solution from seismograms. However, statistical investigations even now remained largely restricted to time-size-space regularities. Why? Statistical tensor analysis requires entry to really modern mathematics -- it is difficult!

Kagan, Y. Y., 2000. Temporal correlations of earthquake focal mechanisms, Geophys. J. Int., 143, 881-897.