Using a spreadsheet to calculate p

Slides:



Advertisements
Similar presentations
Developing Formulas for Circles and Regular Polygons
Advertisements

Unit 7 Polygons.
1 There are various techniques for estimating discharge for small watersheds. If you know the maximum discharge that you need to convey, how do you determine.
Introduction You have used the formulas for finding the circumference and area of a circle. In this lesson, you will prove why the formulas for circumference.
1 The number  is defined as the ratio of the circumference of a circle to its diameter. What is  ? CS110: Introduction to Computer Science: Lab Module.
Introduction In the third century B. C., Greek mathematician Euclid, often referred to as the “Father of Geometry,” created what is known as Euclidean.
Areas of Regular Polygons
11.2 Areas of Regular Polygons Geometry Ms. Reser.
Chapter 10 Measurement Section 10.4 The Pythagorean Theorem.
Mr. Barra Take The Quiz! Polygon with three edges (sides) and three vertices (corners) Sum of all interior angles equals 180° Right triangle One interior.
Polygons, Circles, and Solids
ACT Math Practice. Geometry and Trigonometry Placement Tests Primary content areas included in the Geometry Placement Test include: » Triangles (perimeter,
Families 30 60, 90 45, 90 Resource Geometry/ Sophomores.
Circumference of a Circle Parts of a circle Calculate d from r Calculate r from d Introducing pi Using C =π d C from d …. 5 circles C given radius 5 questions.
Aim: How can we find the area of a Triangle using Heron’s Formula
Adapted from Walch Education Pi is an irrational number that cannot be written as a repeating decimal or as a fraction. It has an infinite number of.
Pythagorean Theorem Eman Almasruhi 3/1/2015. Objectives : Students will know the right triangle. Recognize Pythagorean Theorem. Do some example to show.
Chapter 11 Areas of Plane Figures Understand what is meant by the area of a polygon. Know and use the formulas for the areas of plane figures. Work geometric.
MCHS ACT Review Plane Geometry. Created by Pam Callahan Spring 2013 Edition.
How To Find The Area AND Perimeter Of a Regular Flatlander A Geometry project by Drew Rio Kurt Brad To learn about finding perimeter and area, click here.
Area of Regular Polygons 5.5
Geometry 7 th Grade Math Ms. Casazza Click on the button to go the next slide!
Squares and Rectangles A presentation by Ms. Stupp’s favorite students : Juliana Berhane Tiffany Jeong & Alex Gentile.
Ch 11.3 – The Pythagorean Theorem
The Pythagorean Theorem
4.7 – Square Roots and The Pythagorean Theorem. SQUARES and SQUARE ROOTS: Consider the area of a 3'x3' square: A = 3 x 3 A = (3) 2 = 9.
Jeopardy Geometry Circles 1 Triangles 2 Polygons 3 Formulas 4 Angles 5 Pot Luck
THE NATURE OF MEASUREMENT Copyright © Cengage Learning. All rights reserved. 9.
TechConnect Concrete TechConnect Concrete Math. Place Values.
Objective Apply formulas for perimeter, area, and circumference.
Chapter 11 Area of Polygons and Circles. Chapter 11 Objectives Calculate the sum of the interior angles of any polygon Calculate the area of any regular.
Pythagorean Theorem. History of Pythagorean Theorem Review The Pythagorean theorem takes its name from the ancient Greek mathematician Pythagoras (569.
11.3 Areas of Regular Polygons and Circles What you’ll learn: 1.To find areas of regular polygons. 2.To find areas of circles.
Math 409/409G History of Mathematics Books X – XIII of the Elements.
Pythagorean Theorem By: Kierra Reber period 6 extra credit.
Unit 7 Polygons.
SSAC2007.QA154.ND1.1 What is the Largest-Volume, Open-Top, Rectangular Box You Can Make from a Sheet of Cardboard? – Exploring Polynomial Functions Core.
Copyright © Ed2Net Learning, Inc.1 Good Afternoon! Today we will be learning about Review of Right Triangles Let’s warm up : Find the length of the missing.
Chapter 1: Square Roots and the Pythagorean Theorem Unit Review.
There are various techniques for estimating discharge for small watersheds. If you know the maximum discharge that you need to convey, how do you determine.
To find the perimeter of a rectangle, just add up all the lengths of the sides: Perimeter = L + w + L + w         = 2L + 2w To find the area of a rectangle,
11.5 Areas of Regular Polygons Objective: After studying this section you will be able to find the areas of equilateral triangles and other regular polygons.
Circles: Circumference What do we call the measure of the perimeter of a circle or the distance around a circle? circumference.
#20 in packet: Solve for x and y. Since y is isolated in equation 1, we can use the substitution method. Substitute 3x-5 from the first equation in for.
Holt McDougal Geometry 10-2 Developing Formulas Circles and Regular Polygons 10-2 Developing Formulas Circles and Regular Polygons Holt Geometry Warm Up.
 The Pythagorean Theorem provides a method to find a missing side for a right triangle. But what do we do for triangles that are not right?  The law.
8-8 The Pythagorean Theorem Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Holt McDougal Geometry 1-5 Using Formulas in Geometry Apply formulas for perimeter, area, and circumference. Objective.
Pythagorean Theorem We’ve studied the relationship between interior angles of a triangle, and the exterior angles of a triangle. One thing we haven’t.
Essential Knowledge Recap
Plane Geometry Properties and Relations of Plane Figures
5-6 to 5-7 Using Similar Figures
1-8: Perimeter, Circumference, and Area
A Brief Look into Geometric Constructions Focusing on Basic Constructions and the Impossible Constructions Bethany Das, Emily Simenc, and Zach Tocchi .
Introduction Geometry includes many definitions and statements. Once a statement has been shown to be true, it is called a theorem. Theorems, like definitions,
Using Properties of Circles
Perimeters and Areas of Similar Figures
MATHS Week 8 Geometry.
Pythagorean Theorem a2 + b2 = c2 Reem Alabdulkarim.
Area of Polygons and Circles
1.5: Using Formulas in Geometry
Module 9, Lessons 9.1 and Parallelograms
9-2 Vocabulary Circle Center of a circle Center of a regular polygon
Right-angled triangles A right-angled triangle contains a right angle. The longest side opposite the right angle is called the hypotenuse. Teacher.
Archimedes and Pi What is p? How can you compute p? Module Arch-Pi 1
Day 141 – Arguments about circumference
Using Formulas in Geometry
Objective Apply formulas for perimeter, area, and circumference.
Pythagorean Theorem.
Presentation transcript:

Using a spreadsheet to calculate p SSAC2005.QA21.EG1.1 Archimedes and Pi Using a spreadsheet to calculate p What is p? Core Quantitative Issue Ratios and Proportions The ratio of a circle’s circumference to its diameter is the same no matter how large the circle is. Supporting Quantitative Concepts Estimation Limits Geometry: Pythagorean Theorem Iteration Logic function, IF Prepared for SSAC by Eric Gaze Alfred University, Alfred, NY © The Washington Center for Improving the Quality of Undergraduate Education. All rights reserved. 2005

Overview of Module Archimedes of Syracuse, 287 – 212 BCE, was a brilliant Greek mathematician credited with the first sophisticated approximation of p. Ancient civilizations knew this ratio was slightly larger than 3, but the Greeks were the first to explore exactly how much larger it is. Slides 3-4 introduce the approach Archimedes took to approximate pi by using circumscribed polygons. Slides 5-7 give a first approximation using a circumscribed hexagon and explore the related problem of estimating square roots. Slides 8-12 explore Archimedes’ iterative process of cascading right triangles that share the same vertex angle, which is bisected at every step. Slide 13 creates the spreadsheet which gives the approximation of pi using circumscribed polygons. Slide 14 gives the assignment to hand in.

How can you measure the arc-length of a circle? To find p we need to find the circumference… How can you measure the arc-length of a circle? The ingenious technique devised by the Greeks and adroitly exploited by Archimedes was to circumscribe a polygon about the circle. The perimeter of the polygon then approximates the circumference! Polygons are made up of right triangles and straight sides, perfect for a civilization that included Euclid and Pythagoras. Can you subdivide this hexagon into a collection of right triangles?

Which ratio, or , is more useful To approximate p we need to compute the ratio of the perimeter to the diameter… Archimedes focused on a single right triangle and the associated ratio of the two legs of the right triangle. c b a Which ratio, or , is more useful for computing ? How? Note that Multiplying the numerator by the number of sides will give:

What is special about this triangle? Archimedes started with a circumscribed hexagon, giving a right triangle well known to the Greeks. What is special about this triangle? This triangle is a 30-60-90 right triangle, which is ½ of an equilateral 60-60-60 triangle. x b ½ x c a Use the Pythagorean Theorem to compute the height of this triangle in terms of x. Thus the ratio of sides in a 30-60-90 right triangle:

Archimedes now has a big problem: how to compute ? We can create a spreadsheet to estimate . We know this number is between 1 and 2 since . = Given Number Recreate this spreadsheet with appropriate formulas. = Formula To begin the spreadsheet, we must choose a starting value and an increment to increase it by. For our first iteration, we will use a starting value of 1 and an increment of 0.1. Cells in the first column simply add the increment stored at the top to the number in the row above the cell. Cells in the second column have two possible outputs: the square of “value” or “TOO BIG”. We use the IF logic function: =IF (B6^2 < 3, B6^2, “TOO BIG”)

Add four more columns to your spreadsheet to find Now we iterate Use the copy and paste commands to transfer your IF function to each successive, two-column block. Add four more columns to your spreadsheet to find to 5 decimal places. Choose your starting value based on the best estimate from the previous iteration. We get a very good estimate of the square root of 3 by using five decimal places in the iteration.

Archimedes is now ready to estimate p using a hexagon. Recreate this spreadsheet. Refer back to slide 4 for the approximation formula. Use your work from slides 5 and 6 to estimate p. Archimedes recognized that this estimate was not very close, and he also knew that to get a better approximation he would need to increase the number of sides. His genius was figuring out how to compute the crucial ratio for polygons which have more sides and are not composed of 30-60-90 right triangles. Better Approximation!

How many sides does the new polygon have? The approach... Archimedes’ approach is to bisect the vertex angle of the right triangle at the center of the polygon thereby creating a new right triangle. This new right triangle belongs to a new polygon with more sides. How many sides does the new polygon have? c b1 b c2 b2 a Proposition 3 from Book VI of Euclid’s Elements: (for the case where the angle opposite b1 is the same as the angle opposite b2) For more information on this equation, click here Archimedes needs to find the new ratio:

What do we need to multiply both sides by to get the ratio Archimedes used Euclid’s Proposition VI to arrive at the desired ratio as follows: To get to Start with Proposition VI from Book 3 of Euclid’s Elements: c b1 b c2 b2 a What do we need to multiply both sides by to get the ratio ? in the sky First, Add 1 to Both Sides!

Proposition 3 from Book VI of Euclid’s Elements: Continuing the calculation from the previous slide we arrive at as follows: Proposition 3 from Book VI of Euclid’s Elements: b1 b a c c2 b2 b2 How is related to and ?

Recreate this spreadsheet We are now ready to estimate p using a dodecagon. Recreate this spreadsheet b1 b a c c2 b2 The ratio c/b is not necessary for estimating p. If we knew the ratio, c2/b2 for the smaller triangle, however, we could bisect the angle again and repeat the process for a 24-sided polygon, and then again and again for polygons with more and more sides! Excel excels at this type of iterative process.

Use the formula you found for c2/b2 to recreate this spreadsheet. Use the Pythagorean Theorem for the smaller green triangle and divide through by b2. Solve for c2/b2. Use the formula you found for c2/b2 to recreate this spreadsheet. b1 b a c c2 b2 We now have a huge advantage over Archimedes, who had to do each calculation one at a time by hand. We can fill the formulas down the columns and estimate p using polygons with as many sides as we please!

Expand your spreadsheet from the previous slide. Hi

Goodbye End of Module Assignment Write out your calculations from Slide 5 involving the Pythagorean Theorem. Verify the ratios for a/b and c/b. Submit an electronic copy of your spreadsheet from Slide 6 on Blackboard. Write out your answer to the question from Slide 8 with clear explanation and a picture. Write out your answers to the questions on Slides 9 and 10 with clear explanations. Write out your calculations from Slide 12 involving the Pythagorean Theorem. Submit an electronic copy of your spreadsheet from Slide 13 on Blackboard. Use your spreadsheet to determine how many decimal places of accuracy Archimedes was able to get for a 96-sided polygon using to approximate the square root of 3. We do not know how Archimedes arrived at this fraction. 8. Determine how many decimal places of accuracy you need for the square root of 3 to get 9 decimal places of accuracy for p.

Euclid’s Elements: Proposition 3, Book VI What it says: If an angle of a triangle is bisected by a straight line cutting the base, then the segments of the base have the same ratio as the remaining sides of the triangle; and, if segments of the base have the same ratio as the remaining sides of the triangle, then the straight line joining the vertex to the point of section bisects the angle of the triangle. This statement comes from http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI3.html, which also contains further information about the proposition, including a proof. Back to Slide 9