Name : Mohammed Ali Alghamdi ID : Pre-calculas Sec

Slides:



Advertisements
Similar presentations
Write equation or Describe Transformation. Write the effect on the graph of the parent function down 1 unit1 2 3 Stretch by a factor of 2 right 1 unit.
Advertisements

3.5 Inverse Trigonometric Functions
The square root function and its family.. By: Bothaina Mohammed.
Find the period of the function y = 4 sin x
MATH 101- term 101 : CALCULUS I – Dr. Faisal Fairag Sec 2.2: THE LIMIT OF A FUNCTION Sec 2.3: CALCULATING LIMITS USING THE LIMIT LAWS From sec 2.1: Example:
Section 1.6 Transformation of Functions
6.5 - Graphing Square Root and Cube Root
Parent Functions General Forms Transforming linear and quadratic function.
2.4 The Chain Rule Remember the composition of two functions? The chain rule is used when you have the composition of two functions.
3-2 Families of Graphs Pre Calc A. Parent Graphs.
3.5-2 – Writing New Functions. Recall… We can transform a basic parent function by: – Vertical Shift – Horizontal Shift – Reflection – Stretch/Compress.
Lesson 3.2. Parent Function General Formula We can write all parent functions in the following form:
Top 10 of Set 1 Review Domain and Range Inverses Odd and even rules for a function Questions: 2,3,7,10,11,12,13,20,23,31.
3.5 Inverse Trigonometric Functions
Pre-Calculus Honors 4.5, 4.6, 4.7: Graphing Trig Functions
Ali AlSalboukh
Project 1: Graphing Functions
Project 1 Name: Abdallah Tariq Bashawri ID: Subject: Pre Calculus Section: 105 Due: 1st march,2013.
10 Elementary Functions Graphing Parent Functions
Quadratic Functions in Vertex Form
Functions – Transformations, Classification, Combination
Pre-AP Algebra 2 Goal(s):
Which of the following statements is true for this triangle?
Absolute Value functions
Translation Images of Circular Functions
2.6 Translations and Families of Functions
Special Angle Values.
3.2 Families of Graphs Objectives: Identify transformations of simple graphs. Sketch graphs of related functions.
Sum and Difference Identities
Sum and Difference Identities for the Sin Function
Lesson 6.5/9.1 Identities & Proofs
Lesson 4.6 Graphs of Other Trigonometric Functions
Unit 2: Functions.
Trig Functions: the unit circle approach
Unit 2: Functions.
مدير المدرسة أ. عقيل محمد مهنا الموجهه الأولى أ. حصة العلي
19 Dec.2010-Self Controlling-Ali Mohamed
10. Writing the equation of trig functions
Sec. 2.5 Transformations of Functions
State the period, phase shift, and vertical shift
2.7 Graphing Absolute Value Functions
Unit 2: Functions.
Rotated Conics WOW!!!.
Frequency and Phase Shifts
Find the exact values of the trigonometric functions {image} and {image}
4.2 – Translations of the Graphs of the Sine and Cosine Functions
2.7 Graphing Absolute Value Functions
§ 8.3 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions.
Horizontal Shift left 4 units Vertical Shift down 2 units
Page ) Sin: –0.9511; Cos: –0.3090, Tan: Quadrant III 17)
Predicting Changes in Graphs
Determining the Function Obtained from a Series of Transformations.
Predicting Changes in Graphs
5-4: Trig Identities Name:_________________ Hour: ________
10. Writing the equation of trig functions
Section 4.1 Day 2 Antiderivatives and Indefinite Integration
Conversions, Angle Measures, Reference, Coterminal, Exact Values
What is your best guess as to how the given function
Chapter 3 Chain Rule.
Find the derivative of the following function: y(x) = -3 sec 9 x.
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Quadratic Functions in Vertex Form
Calculus 3-7 CHAIN RULE.
Shifting.
Trigonometric Graphing Day 2 Graphs
Getting ready for Pre-Calculus class.
2015 Planning New Years Resolutions That Stick By Elementary Ali
Quick Integral Speed Quiz.
Differentiation Rules for Products, Quotients,
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

Name : Mohammed Ali Alghamdi ID : 201202625 Pre-calculas Sec Name : Mohammed Ali Alghamdi ID : 201202625 Pre-calculas Sec. 101 Project 1 : Ten Elementary Functions with sheft and reflex

Parent function f(x)=x shifting 4 up f(x) = x+4 shifting 4 down f(x) =x-4 reflex f(x) = -x sifting reflex 5 up f(x)=-x+5 shifting reflex 6 down f(x)=-x-6

Parent function f(x)=x^2 shifting 4 up f(x) = x^2 +4 shifting 3 down f(x) = x^2 -3 reflex f(x) = -(x)^2 shifting 3 right f(x) = (x-3)^2 shifting 2 left f(x) = (x+2)^2

Parent function f(x)=|x| shift up 5 f(x)=|x|+5 shift down 4 f(x)= |x|-5 Reflex f(x) = -|x| shift 7 right f(x)=|x-7| shift 3 left f(x)=|x+3|

Parent function f(x)=sqrt x shift up 3 f(x)=sqrt x +3 shift down 3 f(x)= sqrt x -3 shift 4 right f(x)=sqrt (x-4) shift 4 left f(x)=sqrt (x+4) Reflex around y axis f(x) = sqrt (-x) Reflex around x axis f(x)=-sqrt x

Parent function f(x)=2^x shift up 3 f(x)= 2^x +3 shift down 4 f(x)= 2^x -4 shift 6 right f(x)=2^(x-6) shift 5 left f(x)=2^(x+5) Reflex around y axis f(x) = 2^-x Reflex around x axis f(x)=-2^x

Parent function f(x)=1/x shift up 4 f(x)= 1/x +4 shift down 6 f(x)= 1/x -6 Reflex f(x) = -1/x shift 4 right f(x)=1/(x-4) shift 3 left f(x)=1/(x+3)

Parent function f(x)=x^3 shift up 3 f(x)=x^3 +3 shift down 2 f(x)= x^3 -2 Reflex f(x) = -x^3 shift 4 right f(x)=(x-4)^3 shift 2 left f(x)=(x+2)^3

Parent function f(x)=sin x shift up 4 f(x)=sin x +4 shift down 3 f(x)= sin x -3 shift 2 right f(x)=sin (x-2) shift 2.5 left f(x)=sin (x+2.5) Reflex f(x)=sin –x or f(x)= - sin x

Parent function f(x)=cos x shift up 3 f(x)=cos x +3 shift down 3 f(x)= cos x -3 shift 2 right f(x)=cos (x-2) shift 2 left f(x)=cos (x+2) Reflex f(x)= -cos x

Parent function f(x)=tan x shift up 5 f(x)=tan x +5 shift down 7 f(x)= tan x -7 shift 2 right f(x)=tan (x-2) shift 1.5 left f(x)=tan (x+1.5) Reflex f(x)= tan –x or f(x)= -tan x