From Edelweiss I to Edelweiss II

Slides:



Advertisements
Similar presentations
The EDELWEISS-II experiment
Advertisements

Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Dark Matter search with EDELWEISS and beyond Gilles Gerbier CEA Saclay – IRFU Rencontres de Moriond- VHEPU march 15 th Expérience pour DEtecter.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Background issues for the Cryogenic Dark Matter Search Laura Baudis Stanford University.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
Direct search for Dark Matter with the EDELWEISS-II experiment: status and results Claudia Nones CSNSM-Orsay On behalf of the EDELWEISS-II collaboration.
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
PANDAX Results and Outlook
Proportional Light in a Dual Phase Xenon Chamber
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
1 Low radioactivity issues in EDELWEISS-II Low Radioactivity Techniques, LRT 2010 Sudbury, August 2010 Pia Loaiza, Laboratoire Souterrain de Modane,
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
EDELWEISS-II : Status and future
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
Direct Dark Matter Searches
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
Michael Unrau, Institut für Kernphysik Analyse von Bolometersignalen der EDELWEISS Dark Matter Suche EDELWEISS dark matter searchFull InterDigitized detector.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Dan Bauer - CDMS Project ManagerAll experimenters meeting - April 23, 2007 Cryogenic Dark Matter Search (CDMS) Progress at Soudan since last summer Successful.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Physics at Extreme Energies, Hanoi, July 2000 Dark Matter Search in the EDELWEISS expt G. Chardin DAPNIA/SPP, CEA-Saclay.
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
EDELWEISS-II : Status and future Véronique SANGLARD CNRS/IN2P3/IPNLyon
DARK MATTER SEARCH Carter Hall, University of Maryland.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
Test of 1kg point contact detector and CDEX-1 Data Analysis Process Wu Yucheng CDEX collaboration Development of High Purity Germanium Detector.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
Leo Stodolsky 80th anniversary
Status of ULE-HPGe Experiment for WIMP Search in YangYang
The CRESST Dark Matter Search Status Report
Fast neutron flux measurement in CJPL
The COBRA Experiment: Future Prospects
A Bubble Chamber for Dark Matter Detection
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Prompt Gamma Activation Analysis on 76Ge
Jing Liu Kavli IPMU, University of Tokyo 8 Apr. 2013, Tuebingen
The Heidelberg Dark Matter Search Experiment
Neutron and 9Li Background Calculations
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
CsI Compton Veto Detector for A low Mass WIMP Experiment
Surface event tagging with NbSi films
BACKGROUND STUDY IN CRESST
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Presentation transcript:

From Edelweiss I to Edelweiss II Véronique SANGLARD CNRS/IN2P3/IPNL sanglard@ipnl.in2p3.fr http://edelweiss.in2p3.fr

Outline The Edelweiss-I experiment 2003 results Ionization trigger data taking Phonon trigger data taking The second phase : Edelweiss-II Perspectives and conclusion

The Edelweiss* collaboration CEA-Saclay DAPNIA/DRECAM CRTBT Grenoble CSNSM Orsay FZK/Univ. Karlsruhe IAP Paris IPN Lyon Laboratoire Souterrain de Modane 1700 m depth under the Fréjus tunnel (4800 we) 4 µ/m²/d (106 less than at the surface) *Expérience pour DEtecter Les WIMPs En SIte Souterrain (Underground experiment to detect WIMP)

Heat and ionization detectors threshold Simultaneous measurement of charge and heat signals for each interaction Different charge/heat ratio for nuclear and electron recoils (γs, βs ionize more than WIMPs and neutrons) Neutrons 73Ge(n,n',γ) Gammas Event by event discrimination Discrimination > 99.9 % for Erec>15 keV

Charge collection Miscollected charge events can simulate nuclear recoils Use of gamma calibration (57Co, 137Cs) to check the detector charge collection quality Few miscollected charge events with amorphous layer Since 2002 use detectors with amorphous layer WITH WITHOUT

The 1 kg stage Shield : 30 cm paraffin 15 cm lead 10 cm copper Al sputtered electrodes NTD heat sensor Ge or Si amorphous layer Guard ring fiducial vol. : 57 %* *(O.Martineau et al. Nim A in press)

2003 Edelweiss data Additional ~45 kg.d recorded with 3 new detectors 2 phases with 2 different triggers On the ionization signal On the phonon signal 2000-2003 data represent ~ 62 kg.d Results : Events observed in nuclear recoil band (40 for Erec > 15 keV)

2003 data (ionization trigger) 20 kg.d Energy threshold : 20, 30 keV 3 events observed in the nuclear recoil band (above these thresholds)

2003 data (phonon trigger) Lower energy threshold : 15 keV 18 events observed in nuclear recoil band, most (12) below 30 keV in 22 kg.d 1 coincidence n-n observed between detectors (10% prob.) Stable behavior of 3 detectors over total exposition

Edelweiss new limit PRELIMINARY Unknown backgrounds "Yellin method"* used to derive exclusion limit *(PRD 66,032005 (2002)) No background subtraction New (prel.) limit consistent with the previous publication* *(Phys. Lett. B 545 43 (2002)) PRELIMINARY

Experimental spectrum Low energy spectrum inconsistent with Wimp mass > ~ 20 GeV Possible backgrounds Neutrons (n-n coinc.) Miscollected charge events (surface events)

Lessons from Edelweiss-I With 3 new detectors and an extended exposure, the preliminary 2003 exclusion limit confirms the previous published one Surface events : Improved radiopurity in Edelweiss-II Identification (or suppression) possible with NbSi thin film sensor Neutron background : Improved shielding against neutron Anti-coincidences more efficient with increased number of detectors

Identification of surface events 2 NbSi athermal phonon sensors for surface event rejection Two components : Thermal (energy) Athermal/transitory (near-surface tag) For this surface event, the athermal component is higher in NbSi 1 First tests of 200g modules in Edelweiss-I promising : 10 x less background while retaining 50 % efficiency

Perspectives : Edelweiss-II Aim : x 100 improvement in sensitivity 1st phase : 21*320g Ge bolometers with NTD heat sensor 7*400g Ge bolometers with NbSi thin film sensor Installation started in April 2004 Data taking in 2005

Edelweiss II : new cryostat Larger experimental volume Low radioactivity cryostat Innovative reversed geometry 10 mK base temperature First phase : 28 detectors, up to 120

Edelweiss II : new setup Clean room Efficient shielding against neutron and gamma ray background 20 cm lead 50 cm PE Muon veto Sensitivity Edelweiss I : 0.2 evt/kg/day Edelweiss II : 0.002 evt/kg/day

Conclusion 2003 preliminary data confirm the 2002 exclusion limit Edelweiss-I is sensitive to -optimistic- SUSY models (10-6 pb) Edelweiss-II, goals : To reach more favored SUSY models (10-8 pb) Competitive with CDMS-II, CRESST-II Testing the bulk of SUSY parameter space (>10-10 pb) will require one-ton detector array and an extreme background rejection

The Modane Underground Laboratory Edelweiss I Edelweiss II 1700 m depth under the Fréjus Tunnel (4800 we) 4 µ/m²/day (106 less than at the surface) 1500 neutrons (>1 MeV)/m²/day (rock radioactivity)

Direct detection Principle : Elastic scattering of a WIMP on a target nucleus Constraints : Low energy deposited : Erecoil <1OO keV Small interaction rate : R<1 evt/kg/day Electronic recoil : background Nuclear recoil : signal

Neutron-gamma discrimination Use of neutron calibration to simulate WIMP nuclear recoils Evt/evt Discrimination (between nuclear and electronic recoils) > 99.9 % for Erec > 15 keV Use n-n coincidences to identify neutron background Ionization Threshold Neutrons 73Ge(n,n',γ) Gammas

Edelweiss-I 2002 data 20

Resolutions

Phonon trigger data Trigger efficiency very precisely determined by coincidence spectrum in neutron data Threshold at 50 % efficiency (in recoil energy)

Expected sensitivity

137Cs calibration with new trigger (1) High statistics γ 137Cs calibration (~105 events) Charge collection quality (check of γ rejection) Exposure (in gamma rays) corresponding to ~ 2 years of data taking ~ 10 nuclear recoil events observed after one week ~ 31 after two weeks Coincidences (between nuclear recoils) observed between detectors

137Cs calibration with new trigger (2) Top detector 5 events in nuclear recoil band with 1 coincidence Further away from background pollution Middle detector 11 events in nuclear recoil band with 2 coincidences Closer to background pollution Bottom detector 15 events in nuclear recoil band with 1 coincidence Closest to background pollution

137Cs calibration with new trigger (3) Summary of all three detectors ~ 22 (Erec > 15 keV) events in nuclear recoil band > 50 000 events below 200 keV recoil energy

137Cs calibration with new trigger (4) What are really these events ? Compatible with nuclear recoils Some of them are coincidences between detectors Probably neutrons 137Cs calibration suggests a contamination by 252Cf source Confirmed by measurement of the source holder in low-background Ge diode setup Edelweiss sensitive to low nuclear recoil rates