MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et.

Slides:



Advertisements
Similar presentations
SNOLAB and EXO David Sinclair SNOLAB Workshop August 2005.
Advertisements

MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov.
NEST: Noble Element Simulation Technique Modeling the Underlying Physics of Noble Liquids, Gases Matthew Szydagis, UC Davis UCLA DM 02/28/14 1
Zhimin Wang Liu Ruoqing, Tang ChenYang, Charling Tao, Changgen Yang, Changjiang Dai, Tsinghua & IHEP , Shanghai.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Bordeaux Meeting June 6-7th, 2005 Meeting starts at 2:30 pm, Monday June 6th 1)Summary of EURONS meeting (February 2005, Madeira) 2)Discussion of ACTAR.
Proportional Light in a Dual Phase Xenon Chamber
P. Gorodetzky PCC-Collège de France XIII ISVHECRI Pylos September NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from.
I. Giomataris Large TPCs for low energy rare event detection NNN05 Next Generation of Nucleon Decay and Neutrino Detectors 7-9 April 2005 Aussois, Savoie,
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
A Direction Sensitive Dark Matter Detector
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room-Temperature, Gaseous-Neon- Based Underground.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
K. Miuchi K. Miuchi July 10, 2008 Dark Matter and Dark Energy Direction-Sensitive Dark Matter Search --NEWAGE-- Kentaro Miuchi (Kyoto University) (New.
Ionization Detectors Basic operation
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
A Lightning Review of Dark Matter R.L. Cooper
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
D. Santos Large TPC Workshop – LPNHE 21/12/2004 Daniel Santos & Emmanuel Moulin Laboratoire de Physique Subatomique et de Cosmologie Grenoble MIMAC-He3.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
DARK MATTER SEARCH Carter Hall, University of Maryland.
I. Giomataris, CEA-Irfu-France
Identification of Dark Matter with Directional Detection Julien Billard, F. Mayet, D. Santos, O. Guillaudin, C. Grignon (MIMAC Collaboration) Laboratoire.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
Paul Colas, CEA/Irfu Saclay. E Ionizing particle electrons are separated from ions The electrons diffuse and drift along the an E field Localisation in.
Slides for IG NewS : GG – analysis june juin 2016 Spherical detector: recent developments I. Giomataris, CEA-Irfu-France Spherical detector at.
Feasibility studies for DVCS and first results on exclusive  at COMPASS DVCS studies Physics impact Experimental issues Recoil detector prototype Exclusive.
A portable and directional fast neutron detector MIMAC FASTn Nadine Sauzet Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble) (UJF Grenoble.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
Low Energy Gamma Rejection
Micromegas TPC and wire TPC First measurements in a magnetic field
Activities on straw tube simulation
MIcro-tpc Matrix of Cells of He3
Elettra Sincrotrone Trieste
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
Ben Morgan & Anne Green University of Sheffield
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Low energy underground experimentation with a TPC G
UK Dark Matter Collaboration
Status and Future Developments of TPC’s with MPGD readout systems
MPGD 2013 Conference,Zaragoza July 1-4, 2012
PADI for straw tube readout and diamonds for MIPs and for high precision tracking beam test – Jülich, Feb Jerzy Pietraszko, Michael Träger, Mircea.
Irina Bavykina, MPI f. Physik
HARPO, a Micromegas+GEM TPC for gamma polarimetry above 1 MeV
Non-Baryonic Dark Matter: From the CMB and axial direct detection
The MICROMEGAS detector in CAST
Neutron Detection with MoNA LISA
Ionization detectors ∆
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
1. Introduction Secondary Heavy charged particle (fragment) production
Dark Matter Search with Stilbene Scintillator
Search for f-N Bound State in Jefferson Lab Hall-B
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Presentation transcript:

MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et de Cosmologie Grenoble (CNRS/IN2P3-UJF-ENSPG) IDM08 – Stockholm, August 20th 2008 D. Santos

(Micro-tpc MAtrix of Chambers ) MIMAC: (Micro-tpc MAtrix of Chambers ) LPSC (Grenoble) : F. Mayet , D. Santos , A. Trichet Technical Coordination : O. Guillaudin - Electronics : G. Bosson, J-P. Richer - Gas detector : A. Pellisier, O. Zimmermann - Data Acquisition: O. Bourrion - Mechanical Structure : Ch. Fourel - Ion source : T. Lamy, P. Sole CEA-Saclay (Dapnia): I. Giomataris, P. Colas, A. Giganon, E. Ferrer, J. Pancin, J-P. Mols ILL (Grenoble) : B. Guerard, G. Manzin IRSN (Cadarache): L. Lebreton, A. Allaoua IDM08 – Stockholm, August 20th 2008 D. Santos

The MIMAC project Rejection of background events : Energy (ionization) A multi-chamber detector for Dark Matter Track-Energy measurements Matrix of chambers (correlation) µTPC : Micromegas technology 3He and CF4 gaz : s(A) dependancy Axial interaction High or low pressure regime Directionnal detector Rejection of background events : Energy (ionization) Track Direction (Cygnus) IDM08 – Stockholm, August 20th 2008 D. Santos

Why do we think we need a large TPC? Directionality (correlation with galactic halo) Axial interaction (3He, 19F) (complement of scalar (coherent) search ) Mass dependence cross section (modularity) Two different operating modes (pressure) Low energy threshold detection (< 300 eV) IDM08 – Stockholm, August 20th 2008 D. Santos

Directionality at low pressure (The ultimate signature to correlate to the galactic halo) Two different modes High pressure (1, 2 or 3 bars) to get WIMPs events !! Low pressure (~100 mbar) to get directionality Range of recoils (x 10 ) (1bar to 100 mbar ) Diffusion (x 2) Drift velocity (x 2) IDM08 – Stockholm, August 20th 2008 D. Santos

of non-baryonic dark matter 3He for axial detection of non-baryonic dark matter spin 1/2 nucleus  axial interaction sensitive to M (WIMP) > 6 GeV neutron capture signature: n + 3He  p + 3H + 764 keV very low sensivity to -rays the possibility to share in a “patchy” matrix with other gases to follow the A cross section function IDM08 – Stockholm, August 20th 2008 D. Santos

CF4 as a quencher and target Axial interaction (odd in proton) The volume needed to have the same number of nuclei that we have in 10 kg of 3He is the 20 m3 at 1 bar.  less volume for the same number of nuclei (at the same pressure) Discrimination electron- recoil by tracks even better than in 3He IDM08 – Stockholm, August 20th 2008 D. Santos

Spin contributions to the axial interaction Nucleus Z Odd nucleon J <Sp> <Sn> 3He 2 n 1/2 -0.05 0.49 19F 9 p 0.44 -0.11 27Al 13 5/2 0.34 0.03 129Xe 54 0.36 IDM08 – Stockholm, August 20th 2008 D. Santos

Cross section 3He- and event rate in MIMAC-He3 (10kg) Accelerator constrains Exclusion curve for background 10-3 kg-1jour-1 Neutralino mass (GeV/c2) IDM08 – Stockholm, August 20th 2008 D. Santos

Complementarity with scalar detection sSD and sSI not correlated E. Moulin et al, PLB 614 (2005)143 IDM08 – Stockholm, August 20th 2008 D. Santos

(Micro-tpc MAtrix of Chambers ) MIMAC: (Micro-tpc MAtrix of Chambers ) spatial temporal resolution energetic recoil track energy threshold ~ 200eV electron/recoil discrimination IDM08 – Stockholm, August 20th 2008 D. Santos

Range vs. Energy 3He recoils Electrons IDM08 – Stockholm, August 20th 2008 D. Santos

a/b ratio = f (pressure) L~10 cm IDM08 – Stockholm, August 20th 2008 D. Santos

Time collection = f(pressure) IDM08 – Stockholm, August 20th 2008 D. Santos

He => 41 eV/ pair (e-ion) => 25 pairs/keV Diffusion & Charge collection D~ 200μm √ L[cm] => D~800 μm => 30 pixels ( L ~15 cm and pixels~250 μm ) He => 41 eV/ pair (e-ion) => 25 pairs/keV With a gain G~3000 => 75000 e-/keV over 30 pixels => threshold ~ 2500e- IDM08 – Stockholm, August 20th 2008 D. Santos

ASIC MIMAC 16 « pixel » channels + mixer & shaper [energy] + double serialiser Process BiCMOS-SiGe 0.35mm Mixer & Shaper [2 gains] « pixel » channel [x 16] serialiser @ 400MHz [x 2] IDM08 – Stockholm, August 20th 2008 D. Santos

Quenching factor calculation (Lindhard theory) F. Mayet (2006) IDM08 – Stockholm, August 20th 2008 D. Santos

Lindhard prediction for Helium From J. Lindhard (1963) Lewin & Smith (1996) parametrization Fraction given to nuclei Quenching factor High Q value for Helium Fraction given to electrons Need to be measured Recoil energy Q(3He) slightly greater than Q(4He) IDM08 – Stockholm, August 20th 2008 D. Santos

Quenching factor measurement ECR source Low energy ion source 1 to 50 keV Developped @LPSC He ions Micromegas µTPC IDM08 – Stockholm, August 20th 2008 D. Santos

MIMAC : µTPC chamber Real size prototype cathod Drift space : 15 cm Micromegas +pixellized anod (x,y) IDM08 – Stockholm, August 20th 2008 D. Santos

MIMAC : energy measurements Recoil energy is shared among : Scintillation Heat ionization c Ionization Quenching factor Helium Quenching factor is predicted by Lindhard theory … but has not yet been measured ! Key point for Dark Matter to get the recoil energy IDM08 – Stockholm, August 20th 2008 D. Santos

QF measurement : calibration 1,486 keV X ray (Al) 5,97 keV X ray (Fe) X a IDM08 – Stockholm, August 20th 2008 D. Santos

Ionization (4He (50 keV)) IDM08 – Stockholm, August 20th 2008 D. Santos

Detection of 4He (recoils) of 1.5 keV !! ( 95% 4He + 5% iso) at 700mbars IDM08 – Stockholm, August 20th 2008 D. Santos

4He (1.25 keV) !!! IDM08 – Stockholm, August 20th 2008 D. Santos

Quenching factor @ 700 mbars QF measurement !! Quenching factor @ 700 mbars Range of interest for Dark Matter Measurement of 4He in 95% 4He + 5% C4H10 Threshold :300 eV (ioni.) or 1 keV (recoil) The response of this 4He detector is fully understood from 1 to 50 keV Dark Matter range : covered IDM08 – Stockholm, August 20th 2008 D. Santos

Quenching factor from 350 to 1300 mbars D. Santos et al. 2008 (to appear) IDM08 – Stockholm, August 20th 2008 D. Santos

QF measurement vs Lindhard & SRIM Scintillation SRIM : simulation of 4He in 95% 4He + 5% C4H10 IDM08 – Stockholm, August 20th 2008 D. Santos

MIMAC : track measurements July 2008 @ IRSN Cadarache Amande facility : Neutron field with energies down to a few keV IDM08 – Stockholm, August 20th 2008 D. Santos

Two-elastic interactions distance in He3 (2 atm) for a 8 keV neutron IDM08 – Stockholm, August 20th 2008 D. Santos

Elastic-capture distance distribution in He3(2 atm) for a 8 keV neutron IDM08 – Stockholm, August 20th 2008 D. Santos

4He (6 keV) in 4He (100mbar) range ~ 4mm IDM08 – Stockholm, August 20th 2008 D. Santos

Diffusion of primary electrons IDM08 – Stockholm, August 20th 2008 D. Santos

Drift velocity vs. Pressure IDM08 – Stockholm, August 20th 2008 D. Santos