CEPC SRF System Design Jiyuan Zhai On behalf of CEPC SRF Study Team

Slides:



Advertisements
Similar presentations
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Advertisements

SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
SRF Requirements and Challenges for ERL-Based Light Sources Ali Nassiri Advanced Photon Source Argonne National Laboratory 2 nd Argonne – Fermilab Collaboration.
A CW Linac scheme for CLIC drive beam acceleration. Hao Zha, Alexej Grudiev 07/06/2016.
CEPC parameter choice and partial double ring design
Interaction region design for the partial double ring scheme
HOM Analysis and HOM Coupler Preliminary Design for CEPC
CEPC APDR Study Zhenchao LIU
Bocheng Jiang SSRF AP group
HOM coupler design and collective instability study
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC Superconducting RF System Design
CEPC parameter optimization and lattice design
Primary estimation of CEPC beam dilution and beam halo
The 13th Symposium on Accelerator Physics
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
Issues in CEPC pretzel and partial double ring scheme design
Luminosity Optimization for FCC-ee: recent results
Optimization of CEPC Dynamic Aperture
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
Beam Loading Effect in CEPC APDR
CEPC-SppC Accelerator CDR Copmpletion at the end of 2017
Institute of High Energy Physics, Beijing
CEPC RF Power Sources System
CEPC APDR SRF and beam dynamics study
Collective effects in CEPC
The design of interaction region
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC APDR SRF considerations(3)
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group
Some CEPC SRF considerations
CEPC partial double ring scheme and crab-waist parameters
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
CEPC Main Ring Cavity Design with HOM Couplers
CEPC APDR and PDR scheme
CEPC advanced partial double ring scheme
CEPC parameter optimization and lattice design
CEPC DA optimization with downhill Simplex
CEPC Waveguide HOM 5-cell and 2-cell Cavity Study and EP Facility
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC Ring RF System Jiyuan Zhai (IHEP) Workshop on the Circular Electron Positron Collider Rome, May 25, 2018.
Parameter Optimization in Higgs Factories Beam intensity, beam-beam parameters, by*, bunch length, number of bunches, bunch charge and emittance.
CEPC APDR SRF considerations(4) -LEP Cavity Voltage &BBU
CEPC parameter and DA optimization
CEPC Partial Double Ring Parameter Update
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
CEPC APDR SRF and beam dynamics study
CEPC SRF System Jiyuan Zhai
Lattice design and dynamic aperture optimization for CEPC main ring
Simulation check of main parameters (wd )
Lattice design for CEPC PDR
CEPC APDR and PDR scheme
ERL Director’s Review Main Linac
Kicker and RF systems for Damping Rings
Injection design of CEPC
CEPC SRF Parameters (100 km Main Ring)
Parameters Changed in New MEIC Design
RF Parameters for New 2.2 km MEIC Design
CEPC Parameter /DA optimization with downhill Simplex
Presentation transcript:

CEPC SRF System Design Jiyuan Zhai On behalf of CEPC SRF Study Team 6th IHEP-KEK SCRF Collaboration Meeting, Beijing, 15 July 2017

Outline CEPC introduction RF system design and parameters RF transient and instability R&D plan and status Collaboration

CEPC-SPPC Project Circumference: 100 km CEPC Beam Energy: 45.5 – 120 GeV SPPC Beam Energy: 35 - 50 TeV CEPC SR Power < 100 MW

CEPC Schedule (ideal) CEPC data-taking starts before the LHC program ends around 2035 Earlier than the FCC-ee possibly concurrent, but advantageous and complimentary to the ILC

CEPC Site Exploration 1) QingHuangDao, Hebei(completed preCDR) 2) Huangling, Shaanxi(2017.1 signed contract to exp.) 3) ShenShan, Guangdong, (completed in August, 2016)

Physics Goals of CEPC Electron-positron collider (45.5, 80, 120 GeV) Higgs Factory Precision study of Higgs (mH, JPC, couplings) Looking for hints of new physics Luminosity > 2.0×1034 cm-2s-1 Z & W factory Precision test of standard model Rare decays Luminosity > 1.0×1034 cm-2s-1 Flavor factory: b, c, t and QCD studies

CEPC Organization IAC Institute Board Steering Committee Young-Kee Kim, …. Institute Board Y.N. GAO J. GAO Since Sept. 2013 Steering Committee Y.F. WANG (IHEP),…. ProjectDirector XC LOU Q. QIN N. XU 分工: Intl Relation– J GAO PR – YN GAO Conf. – J.Shan CDR – XC Lou et al. …… CH YU (AC Physics) CDR Editors theory LT Wang accelerator W Chou detector-simu TC Chao Theory HJ HE(TH) JP MA(ITP) XG HE(SJTU) Accelerator J. GAO(IHEP) CY Long(IHEP) JY TANG(IHEP) Detector JoaoCosta(IHEP) S. JIN(NJU) YN GAO(TH)

Machine Parameters of CEPC Main Ring Higgs Wang Dou 20170607 W Wang Dou 20170306 Z Z-high lumi Number of IPs 2 Energy (GeV) 120 80 45.5 SR loss/turn (GeV) 1.67 0.33 0.034 Half crossing angle (mrad) 16.5 Piwinski angle 3.19 5.69 11.8 4.29 Ne/bunch (1011) 0.968 0.365 0.22 0.455 Bunch number 412 5534 5100 21300 Beam current (mA) 19.2 97.1 53.9 465.8 SR power /beam (MW) 32 1.9 16.1 Bending radius (km) 11 Momentum compaction (10-5) 1.14 4.49 IP x/y (m) 0.171/0.002 0.171 /0.002 0.16/0.002 Emittance x/y (nm) 1.31/0.004 0.57/0.0017 0.18/0.0037 1.48/0.0078 Transverse IP (um) 15.0/0.089 9.9/0.059 5.6/0.086 15.4/0.125 x/y/IP 0.013/0.083 0.0055/0.062 0.004/0.039 0.008/0.054 RF Phase (degree) 128 126.9 135 165.3 VRF (GV) 2.1 0.41 0.049 0.14 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.72 3.37 3.9 3.97 Total z (mm) 2.9 3.4 4.0 HOM power/cavity (kw) 0.41(2cell) 0.36(2cell) 0.11(2cell) 1.99(2cell) Energy spread (%) 0.098 0.065 0.037 Energy acceptance (%) 1.5 / Energy acceptance by RF (%) 1.1 0.65 n 0.26 0.15 0.16 0.12 Life time due to beamstrahlung (min) 52 F (hour glass) 0.96 0.98 0.99 Lmax/IP (1034cm-2s-1) 2.0 5.15 1.03 11.9

CEPC Man Ring Layout Double Ring Common cavities for Higgs Two RF sections in total Two RF stations per RF section 14 modules per RF station 28 modules per RF section 56 modules in total Six 2-cell cavities per module One klystron for two cavities

Luminosity Upgrade (RF related) HL-H: SR power 32 MW  50 MW Increase bunch number  higher input power per cavity HL-Z: SR power 16 MW  50 MW limited by the HOM power per cavity (2 kW), input coupler power per cavity (400 kW) and beam loading, and bunch spacing requirement from detector (> 10 ns)  KEKB/BEPCII type cavity HE: Add high gradient, high Q 5-cell cavities (two ring shared)

From Pre-CDR to CDR Circumference: 54 km  100 km Ring type: Single Ring (pretzel, head-on)  Partial Double Ring (1+1 bunch train, crab waist)  Advanced Partial Double Ring (4 + 4 bunch trains; alternative)  Double Ring (baseline) RF System: high RF voltage (5-cell), high HOM power, uniform fill, low lumi. Z  low RF voltage (2-cell), modest HOM power, bunch train gap, heavy beam loading (high lumi. Z)

An Unexpected National Debate on CEPC-SppC China should not build CEPC China should go with CEPC 2016-09-05 Like the SSC – endless cost Use the money for environment, education, health, etc. CEPC takes money from other fields of science CEPC-SppC uncover SUSY is groundless HEP achievement has no benefit (past 70 yrs, future 30, 50 years) to people’s life IHEP is not more significant than 1% or at best 2% in the world’s HEP community; CEPC will be foreign dominated, will not bring Nobel prize to Chinese Worthy focuses: A. new accelerator principles, B. marvelous geometry. point by point rebuttal widely read in the social media

An Unexpected National-Global Debate on CEPC-SppC

大型环形正负电子对撞机 中国物理协会高能物理分会达成共识 The HEP division of the Chinese Physical Society reached a consensus in August, 2016 that placed CEPC as the top priority accelerator based program for the future and endorsed CEPC design and R&D 覆盖比BEPCII更宽能区

http://cepc.ihep.ac.cn

Outline CEPC introduction RF system design and parameters RF transient and instability R&D plan and status

CEPC SRF Layout (one RF section) H: high RF voltage, low current W & Z: low RF voltage, high current Park (detune) the unused cavities for W & Z operation (or use lattice by-pass, or push the unused cavities off-line for Z). H: shared cavities for two rings (half fill). W & Z: separate cavities for two rings (“uniform” fill). Fewer cavities for H, lower current seen by the W & Z cavity, lower impedance for W & Z.

CEPC Main Ring SRF Parameters Zhai Jiyuan 20170706. 100 km, H common cavities. Main Ring parameter: Wang Dou 20170607 & 20170306 H W Z Z-HL Luminosity / IP [1034 cm-2s-1] 2 5 1 12 SR power / beam [MW] 32 1.9 16 RF frequency [MHz] 650 RF voltage [GV] 2.1 0.41 0.049 0.14 Beam current / beam [mA] 19.2 97.1 54 466 Bunch charge [nC] 15.5 5.8 3.5 7.3 Bunch length [mm] 2.9 3.4 4.0 Cell number / cavity Cavity number in use (total) 336 192 24 96 Gradient [MV/m] 13.6 9.3 8.9 6.3 Input power / cavity [kW] 190 333 158 335 Cavity number / klystron Klystron power [kW] 800 Klystron number 168 48 HOM power / cavity [kW] 0.4 0.3 0.1 1.8 Cavity number / cryomodule 6 Cryomodule number in use (total) 56 4 Q0 at operating gradient 1E+10 Optimal QL 9.6E+05 2.6E+05 4.9E+05 1.2E+05

CEPC Main Ring SRF Parameters (1) ZJ20170410 Main Ring parameter: WD20170306 H W Z-HL Luminosity / IP [1034 cm-2s-1] 2 5 12 SR power / beam [MW] 32 16 RF voltage [GV] 2.1 0.41 0.14 Beam current / beam [mA] 19.2 97.1 466 Bunch charge [nC] 15.5 5.8 7.3 Bunch length [mm] 2.9 3.4 4 Cavity number in use / beam (650 MHz 2-cell) 336 96 48 Gradient [MV/m] (with margin for HV-H) 14 9.3 6.3 Input power / cavity [kW] (with margin for HL-H) 190 333 335 Klystron power [kW] (2 cavities / klystron) 800 HOM power / cavity [kW] 0.4 0.3 1.8 Cryomodule number (6 cavities / module) 56 Q0 @ 2 K at operating gradient (long term) 1E10 Total wall loss @ 4.5 K eq. [kW] 23 6 1 No staging (except super-Z and higher energy). Same RF cavity for H, W, Z. No cavity push-pull. Challenging input power, low heat load, input coupler short to reduce module diameter Cavity acceptance Q0 > 4E10 (N-doping), Module horizontal test > 2E10 (clean assembly and magnetic hygiene)

CEPC Main Ring SRF Parameters (2) ZJ20170410 Main Ring machine parameter: WD20170306 H W Z-HL Optimal QL 1.0E6 2.7E5 1.2E5 Relative optimal QL (to H) 1.0 0.1 0.12 Extra power (if fixed optimal coupling for H) 209 % 155 % Cavity bandwidth [kHz] 0.7 2.4 5.3 Optimal detuning [kHz] 0.2 0.9 10.5 Cavity time constant [μs] 488 130 60 Cavity stored energy [J] 46 22 10 Max relative voltage drop for 1 % beam gap 0.9 % 3.3 % 23.2 % Max phase shift for 1 % beam gap [deg] 0.8 3.2 13.7 Max relative voltage drop for 4+4 APDR 10 % 77 % decelerate Max bunch train phase shift for 4+4 APDR [deg] 9.8 74 Variable coupler needed for W&Z, and even for Higgs itself to save power. Heavy beam loading  damp acceleration mode CBI instability during injection and top-up operation Even 1 % beam gap will have large bunch phase shift  change fill pattern from one long gap to many small gaps Alternative APDR (4+4 trains) scheme may not work unless phase shift corrected by beat cavity or other method.

CEPC Booster SRF Parameters (preliminary) ZJ20170410. 10 GeV injection. Booster machine parameter: CX20170401 H W Z-HL Extraction beam energy [GeV] 120 80 45.5 Bunch charge [nC] 0.77 0.2 0.3 Beam current [mA] 0.37 0.33 0.96 Extraction RF voltage [GV] 2.8 1 0.4 Extraction bunch length [mm] 4.7 Cavity number in use (1.3 GHz TESLA 9-cell) 160 64 32 Gradient [MV/m] 16.9 15.1 12.0 QL 2E+07 Cavity bandwidth [Hz] 65 Input power per cavity [kW] (remained detuning 10 Hz) 5.8 4.0 2.5 SSA power [kW] (one cavity per SSA) 10 HOM power per cavity [W] 1.6 Cryomodule number in use (8 cavities per module) 20 8 4 Q0 @ 2 K at operating gradient (long term) 2E+10 Total wall loss @ 4.5 K eq. [kW] (assume CW) 8.4 2.7 0.9 Narrow bandwidth, microphonics Voltage ramp 12 times in 1 s LLRF challenge

Outline CEPC introduction RF system design and parameters RF transient and instability R&D plan and status

Beam Gap Transient Phase shift caused by beam gap in DR or APDR A bunch extracts cavity stored energy when passing through, and power source will recover the cavity voltage when the next bunch comes. When the bunch spacing is much smaller, cavity stored energy and voltage will drop continuously due to lack of power. The latter bunch will move towards voltage peak by auto-phasing, resulting in less longitudinal focusing, smaller energy acceptance, lifetime and luminosity, and possible other dynamical problem. Small phase shift can be estimated by (K. Bane, etc., EPAC96): Correction methods Increase cavity stored energy (less cell number, higher RF voltage, low RF freq) More uniform distribution (increase bunch train number or length) Pulsed power (power source hardware limit and low RF-to-beam efficiency) Beat cavity (small frequency shift of part of RF sources and cavities, beating) Max phase variation proportional to number of bunches in a bunch train, or number of bunch trains (for fixed total bunch number) or the gap length. Δ 𝜃 1𝑁 ≈ −2𝑘𝑞 𝑉 𝑐0 sin 𝜙 0 𝑇 t 𝑇 g / 𝑇 b 𝑇/ 𝑁 t ≈ −2𝑘 𝐼 0 𝑇 𝑔 𝑉 𝑐0 sin 𝜙 0 ≈ −2𝑘𝑞𝑁 𝑉 𝑐0 sin 𝜙 0 Refer to talks in the CEPC-SPPC Workshop, Apr. and Sept. 2016 http://indico.ihep.ac.cn/event/5277/session/9/contribution/45/material/slides/ http://indico.ihep.ac.cn/event/6149/session/2/contribution/55/material/slides/ Phase shift not trivial for double ring W & Z with 1 % ~ 5 % gap to mitigate ion-trapping and fast beam ion instability (FBII)  Cure by using many short bunch trains. APDR phase shift  Cure by beat cavity

Phase Shift of Z-pole Beam Gap 1% long gap: Same with Wilson formula. Bane’s formula (plot by Haipeng Wang’s Mathcad code) 1065 trains, 20 bunches each (Tg = 195.7 ns, Tb = 6.15 ns) P.B. Wilson. SLAC-PUB-6062,1993

Transient Simulation with Transfer Functions 1% long gap 1065 trains, 20 bunches each (Tg = 195.7 ns, Tb = 6.15 ns) Pedersen Model Based on Dmitry Teytelman’s MATLAB code

5 % Gap T. Kobayashi (KEK)

5 % Gap T. Kobayashi (KEK)

Phase Compensation with Beat Cavity Tune freq of some RF sources and cavities slightly different from the normal RF sources (650 MHz) and cavities (optimal detuning) – beating Use linear part of beat wave to compensate voltage and phase variation due to beam loading (non-linearity increases with train length, max. half-fill of the ring) Higher order beats are more effective but more non-linear Number of beat cavities: 𝑓 𝐷𝐹 = 𝑓 𝑅𝐹 ±𝑚 𝑁 t 𝑓 rev 𝑁 BFC𝑚 = ∆ 𝑉 RF 2𝑉 BFC sin(𝑚 𝑁 t 𝜔 rev 𝑇 t ) K. Kubo etc. Compensation of bunch position shift using sub-RF cavity in a damping ring, PAC93 electron bunch train positron bunch train bunch train freq = train # x revolution freq = beat freq / m

APDR Phase Correction with Beat Cavity Machine Parameter: wangdou20160918/23(Circumference 61 km) H Low Power High Lumi W Z 1-cell Bunch charge (nC) 32 18.6 12.5 Bunch number (one beam) 70 107 400 1100 Bunch spacing (ns) [bunch train length < 3.2 km] 152.3 98.5 26.2 9.2 Cavity voltage (MV) 7.4 7.3 3.9 3.7 Synchrotron phase (deg) 123 122 128 146 PDR 1+1 max voltage drop 11 % 18 % 72 % 140 % 70 % PDR 1+1 max phase shift (deg) 12 19 67 / 49 PDR 3rd order beat cavity# (29 kHz) 33 51 83 28 14 APDR 4+4 max voltage drop 3 % 4 % 35 % APDR 4+4 max phase shift (deg) 3 4.8 16.7 24.2 12.1 APDR 2nd order beat cavity# (79 kHz) 10 16 27 9 4

Pulsed Power Correction Constant amplitude and phase of the cavity voltage. To avoid complicated Lorentz force detuning correction in ring.

Robinson Stability (CEPC DR Z mode) by Haipeng Wang’s Mathcad code Fast direct feedback (group delay 2 us, loop gain 22). ~ 10 % more power to have Robinson stable operation of high current Z-pole.

Fundamental Mode Instability of Z-pole Fundamental mode CBI of Z-pole due to large circumference (small revolution frequency, low RF voltage) and high current (large cavity bandwidth and detuning, input coupler power limit). For M bunches, there are M coupled-bunch modes, the phase shift between adjacent bunches for mode number n: n = 0, 1, 2, ... M-1 CBI growth rate : f p μ+ = (pM + μ) f 0 + f s f p μ− = [(p+1)M − μ] f 0 + f s Kouki Hirosawa. PASJ2016 TPU012

Fundamental Mode Instability of Z-pole Longitudinal coupling-impedance Cavity resonance frequency 𝑍 || (𝑓)= 1 𝛽 𝑅 𝑠ℎ 2 1+𝑖 𝑄 𝐿 ( 𝑓 𝑓 𝑟𝑒𝑠 − 𝑓 𝑟𝑒𝑠 𝑓 Optimal detuning Cavity acceleration mode impedance and beam spectrum of CEPC Z-pole mode Growth time of CBI due to acceleration mode of CEPC Z operation (10 modes to be damped)

Fundamental Mode Instability of Z-pole Use the mode by mode damper system with digital filters to suppress (SuperKEKB) Damper system for SuperKEKB: Kouki Hirosawa. Development of a coupled bunch instability damper caused by the acceleration mode for SuperKEKB. PASJ2016 TPU012 Functional block diagram of digital filter for SuperKEKB

Main Ring HOM CBI and Feedback Machine parameter: wangdou20170222 H W Z Cavity number (total) 336 240 96 Beam feedback time [ms] 3.3 Average beta_x,y in RF cavity [m] 30 Qe limit 1×104 H cavity 336, W&Z cavity 168, with feedback, Ib limit [mA] 580.14 1547.05 673.07 Lmax / IP [1034 cm-2s-1] 60.19 81.59 17.23 Unused cavity off-line for W&Z, with feedback, Ib limit [mA] 2165.87 2355.75 114.23 60.29 H, W, Z all 336 cavities, with feedback, Ib limit [mA] 386.76 168.27 20.40 4.31 H cavity 336, W&Z cavity 168, without feedback, Ib limit [mA] 39.94 31.57 3.25 4.14 1.66 0.08 Unused cavity off-line for W&Z, without feedback, Ib limit [mA] 44.19 11.38 2.33 0.29 SR power limit [MW] 50 Ib limit from SR power limit [mA] 29.9 151.1 1470.6 Lmax/IP limit from SR power limit [1034 cm-2s-1] 3.1 8 37.6 HOM Qe limit ~ 1×104 (including frequency spread) Beam feedback time ~ 3.3 ms (damping time: 5 turns and margin) Average beta_x,y in RF cavity ~ 30 m

Cavity HOM Frequency Spread Cavity fabrication and tuning will make small HOM frequency spread, this will result in an “effective” quality factor Q. Red: σfR=0 Blue: σfR=1 MHz fR = 1.16554 GHz, Q = 1.10×105, 336 RF cavities

Main Ring Cavity Impedance Cut off Cut off TM011 TM120/hybrid TM021 TM020 TM111/TE121 TM012 TE111/TM110 H: 336 cavity, W & Z: 168 cavity Feedback: 3.3 ms, Transverse beta: 30 m Impedance of all the modes below the threshold if HOM frequency spread included Further optimize coupler RF design

CEPC Booster HOM CBI Instability and Feedback Modes f (GHz) R/Q (Ω) Qext measured CBI Growth Time (ms) H-extraction W-extraction Z-extraction TM011 2.45 156 5.90E+04 3758 2157 363 TM012 3.845 44 2.40E+05 2087 1198 202 TE111 1.739 4283 3.40E+03 6159 4594 906 TM110 1.874 2293 5.00E+04 782 583 115 TM111 2.577 4336 414 309 61 TE121 3.087 196 4.40E+04 10400 7757 1530 H-injection W-injection Z-injection 313 270 80 174 150 513 574 199 65 73 25 34 39 13 867 970 336 All larger than beam feedback time limit ~ 3.3 ms (5 turns and margin) Cavity HOM frequency spread will have more margin Average beta_x,y in RF cavity ~ 30 m

Outline CEPC introduction RF system design and parameters RF transient and instability R&D plan and status

CEPC SRF R&D Plan (2017-2022) Two small Test Cryomodules (650 MHz 2 x 2-cell, 1.3 GHz 2 x 9-cell) Two full scale Prototype Cryomodules (650 MHz 6 x 2-cell, 1.3 GHz 8 x 9-cell) Schedule 2017-2018 (key components, IHEP Campus) high Q 650 MHz and 1.3 GHz cavities, N-doping + EP 650 MHz variable couplers (300 kW),1.3 GHz variable couplers (10 kW) high power HOM coupler and damper, fast-cool-down and low magnetic module, reliable tuner 2019-2020 (test modules integration, Huairou PAPS) Horizontal test 16 MV/m, Q0 > 2E10 beam test 1~10 mA 2021-2022 (prototype modules assembly and test, Huairou PAPS)

Hardware Specification Qualification Normal Operation Max. Operation 650 MHz 2-cell Cavity VT 4E10 @ 22 MV/m HT 2E10 @ 20 MV/m 1E10 @ 16 MV/m (long term) 2E10 @ 20 MV/m 1.3 GHz 9-cell Cavity VT 3E10 @ 25 MV/m 2E10 @ 23 MV/m 650 MHz Input Coupler HPT 400 kW sw 300 kW 400 kW 1.3 GHz Input Coupler HPT 20 kW peak, 4 kW avr. < 15 kW peak 18 kW peak 650 MHz HOM Coupler HPT 1 kW < 0.2 kW 1 kW 650 MHz HOM Absorber HPT 5 kW < 2 kW 5 kW 650 MHz Cryomodule (six 2-cell cavities) static loss 5 W @ 2 K static loss 8 W @ 2 K static loss 10 W @ 2 K Tuner (MR & Booster) tuning range and resolution 400kHz/1Hz 200 kHz / 1 Hz 400 kHz / 1 Hz LLRF (MR & Booster) amp & phase stability 0.1%, 0.1 deg 1%, 1 deg

Key Components 650 MHz 2-cell cavity & tuner 5-cell cavity Q > 2E10 @ 20 MV/m 650 MHz variable coupler 300 kW HOM coupler 1 kW 650 MHz & 1.3 GHz cryomodule < 5 W @ 2K HOM absorber 5 kW 1.3 GHz variable coupler 20 kW 1.3 GHz TESLA cavity (high Q high gradient study)

CEPC MR 650 MHz Cryomodule Operating at 2 Kelvin of superfluid helium. Six 2-cell 650 MHz superconducting cavities, six high power couplers, six mechanical tuner and two RT HOM absorbers, et al. Fast cool-down capability. Static heat load budget of whole cryomodule is 5 W at 2 K.

CEPC MR 650 MHz Cryomodule Overall length (flange to flange, m) 9.5 Inner diameter of vacuum vessel (m) 1.3 Beamline height from floor (m) 1.5 Overall weight (t) 16 Cryo-system working pressure (mbar) 31 Cryo-system working temperature (K) 2 Cryo-system pressure stability at 2 K (mbar) 0.1 Diameter of 2-phase pipe, mm 114 2 K heat exchange 1 Number of JT valve Number of cavities 6 Number of coupler HOM absorber Number of 200-POST

High Energy Photon Source (HEPS) IHEP New SRF Facility Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing Construction: 2017 - 2019 Ground Breaking: May 31, 2017 IHEP PAPS High Energy Photon Source (HEPS) 2018 - 2024 PAPS 2017 - 2019 4500 m2 SRF lab

PAPS Beam Test System CW 1 ~ 10 mA 15 ~ 30 MeV DC photo cathode gun 1.3 GHz test module 650 MHz test module

Chinese SRF Industry and Opportunities Niobium: OTIC (EXFEL 35% 7 t, FRIB 50% 5 t, LCLS-II 50% 5.6 t …) Cavity: OTIC, HERT, HIT, BIAM… Coupler: HERT (ILC, CADS, RISP …), JNT … Cryomodule: WXCX (EXFEL 60% 60, LCLS-II 100% 33, FRIB), HFJN … CIADS, HIAF, SCLF, HEPS … more than 1000 cavities needed in next 5 years for China

Summary and Outlook Baseline layout and parameters for CEPC RF system established (~ 500 cavities in total: 336 main ring 650 MHz 2-cell cavities and 160 booster 1.3 GHz 9-cell cavities). Complete CDR in the end of 2017. Key physics issues and component design progressing well. Prototype demonstration next year. Extensive CEPC SRF technology R&D planned and launched, with support of large PAPS SRF facility. Ramp up CEPC SRF industrialization and international collaboration.