Clock Configuration for GBT Application

Slides:



Advertisements
Similar presentations
TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)
Advertisements

Spartan II Features  Plentiful logic and memory resources –15K to 200K system gates (up to 5,292 logic cells) –Up to 57 Kb block RAM storage  Flexible.
RCE Platform Technology (RPT)
Timers and Interrupts Shivendu Bhushan Summer Camp ‘13.
Uli Schäfer 1 FPGAs for high performance – high density applications Intro Requirements of future trigger systems Features of recent FPGA families 9U *
Logic Analyzer and pulse generator ECE 682. The specification Specification was handed out in ECE 582 last quarter. Basics  3 channels – dedicated output.
“A board for LKr trigger interface and proto-L0TP” G.Lamanna (CERN) NA62 Collaboration Meeting in Brussels LKr-WG
Global Timing Constraints FPGA Design Workshop. Objectives  Apply timing constraints to a simple synchronous design  Specify global timing constraints.
Objectives How Microcontroller works
7 th March 2007M. Noy. Imperial College London CALICE MAPS DAQ Project Summary.
Beam Secondary Shower Acquisition System: Igloo2 GBT Implementation tests at 5Gbps Student Meeting Jose Luis Sirvent PhD. Student 09/06/
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
GBT Interface Card for a Linux Computer Carson Teale 1.
Preliminary Design Review: Hub Implementation Dan Edmunds, Wade Fisher, Yuri Ermoline, Philippe Laurens Michigan State University 01-Oct-2014.
© 2003 Xilinx, Inc. All Rights Reserved Global Timing Constraints FPGA Design Flow Workshop.
Timers and Interrupts Anurag Dwivedi. Let Us Revise.
Latest ideas in DAQ development for LHC B. Gorini - CERN 1.
Not So Deep Blue The original Deep Blue. LED chess board Track movements of all pieces Show possible moves Track game time Detect piece movement Magnets/Reed.
CERN, 18 december 2003Coincidence Matrix ASIC PRR Coincidence ASIC modifications E.Petrolo, R.Vari, S.Veneziano INFN-Rome.
A Super-TFC for a Super-LHCb (II) 1. S-TFC on xTCA – Mapping TFC on Marseille hardware 2. ECS+TFC relay in FE Interface 3. Protocol and commands for FE/BE.
CRU Weekly Meeting Erno DAVID, Tivadar KISS Wigner Research Center for Physics (HU) 18 November, 2015.
Trigger Workshop: Greg Iles Feb Optical Global Trigger Interface Card Dual CMC card with Virtex 5 LX110T 16 bidirectional.
Solve Equations With Variables on Both Sides. Steps to Solve Equations with Variables on Both Sides  1) Do distributive property  2) Combine like terms.
RCE Project Update and Plans Matt Weaver, July 14, 2015 SLAC Technology Innovation Directorate Advanced Data Systems Department.
Beam Secondary Shower Acquisition System: Igloo2 GBT Starting with LATOP version Student Meeting Jose Luis Sirvent PhD. Student 16/06/
Consideration of the LAr LDPS for the MM Trigger Processor Kenneth Johns University of Arizona Block diagrams and some slides are edited from those of.
E. Hazen - DTC1 DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University.
Compute Node Tutorial(2) Agenda Introduce to RocketIO How to build a optical link connection Backplane and cross link communications How to.
OTC/Carrier Firmware and Integration Kenneth Johns, Bill Hart, Andy Dowd, Charlie Armijo, Kalya Niu University of Arizona John Hobbs, Dan Boline, Chuck.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
HO / RPC Trigger Links Optical SLB Review E. Hazen, J. Rohlf, S.X. Wu Boston University.
DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University
Hugo Furtado CERN - Microelectronics Group 11th Workshop on Electronics for LHC and future Experiments Delay25, an ASIC for timing adjustment in LHC Delay25.
Configuration and local monitoring
The AM Chip Ser/Des IP Protocol – Test Procedure Matteo Beretta
observed instabilities in Rf opamps R. Abbott, 30 July 2010
DAQ read out system Status Report
AMC13 Project Status E. Hazen - Boston University
DAQ and TTC Integration For MicroTCA in CMS
AMC13 T1 Rev 2 Preliminary Design Review E. Hazen Boston University
Kenneth Johns University of Arizona
RCE Application Workshop
Student Meeting Jose Luis Sirvent PhD. Student 26/05/2014
Creation of a reference design in standard mode
ABC130: DAQ Hardware Status Matt Warren et al. Valencia 3 Feb 2014
555 Timer EEE DEPARTMENT KUMPAVAT HARPAL( )
Erno DAVID, Tivadar KISS Wigner Research Center for Physics (HU)
CRU Development Platforms
Each I/O pin may be configured as either input or output.
GTK-TO readout interface status
LATOME LAPP Nicolas Dumont Dayot on behalf of the LAPP team
FMC adapter status Luis Miguel Jara Casas 5/09/2017.
Clock & Control Card Status 29 July Martin Postranecky/Matt Warren
On Behalf of the GBT Project Collaboration
ASP-H Clocks John DeHart Applied Research Laboratory Computer Science and Engineering Department
Matrix Processor / Backplane Design Details
FPGA.
8-layer PC Board, 2 Ball-Grid Array FPGA’s, 718 Components/Board
Introduction to Static Timing Analysis:
Master I/O Connectors PL12 PL14 PL21 PL20 PL17.
Clock & Control Card Status 29 July Martin Postranecky/Matt Warren
Impact of Serializer/Deserializer Architecture on ETD High-Speed Links
Fanout Clock Skew Lab Exercise
CMOS VLSI Design Chapter 13 Clocks, DLLs, PLLs
Clock MGTREFCLK VIRTEX7_A/B MGTREFCLK KINTEX7_C 110 MGT3 1 (9) 210
8253 – PROGRAMMABLE INTERVAL TIMER (PIT). What is a Timer? Timer is a specialized type of device that is used to measure timing intervals. Timers can.
PID meeting Mechanical implementation Electronics architecture
The AM Chip Ser/Des IP Protocol – Test Procedure Matteo Beretta
Fixed Latency Serial Links with FPGA-embedded SerDes for SuperB
TTC setup at MSU 6U VME-64 TTC Crate: TTC clock signal is
Presentation transcript:

Clock Configuration for GBT Application GBT application requires 120MHz clock for MGT HSIO-II: TTC RMB variable clock generator has 120MHz TTC clock for Artix, but clock to DTM is delivered to a regular fabric clock pin. Simplest to replace HSIO-II X12 100 MHz Oscillator with 120 MHz part, but only on-shelf part has a central ground pad that can short out HSIO-II board pads. Tried one replacement with central pad taped over. Possible revision for HSIO-II to redirect TTC RMB clock to DTM REFclock path to replace the X12 oscillator. Need to check either solution actually works.

Existing HSIO-II (C03) Clock Configuration PGP_REFCLK1 312.5 MHz DTM Bank 113 X3 CLK_SCL/SDA, CLK_SEL ZYNQ Z030 PGP_REFCLK0 250 MHz X10 REFCLK1 RTM_REFCLK1 312.5 MHz MGTREFCLK1_112_W5,6 Bank 116 X5 250 MHz RTM_REFCLK0 250 MHz X5 Pkg=IDT8N4Q001 Artix T200 DTM_CLK[0:2] DTM_CLK[0:2] Bank 15 MRCC/SRCC MGTREFCLK0_112_U5,6 X3 REFCLK0 N/L Pkg=LCC6 DTM_REFCLK X12 ‘PCIE_REFCLK’ 100 MHz TTC_CLK[0:1] TTC_SCL/SDA TTC DTM_TO_RTM_LS0 SI5338A DTM_RTM_LS0 IO_L13p/m_T1_MRCC_t/u17 160MHz variable clock generator HSIO-II TTC RMB BUSY

Possible revise HSIO-II (C04) Clock Configuration X9 312.5 MHz DTM PGP_REFCLK1 Bank 113 X3 CLK_SCL/SDA, CLK_SEL ZYNQ Z030 PGP_REFCLK0 250 MHz X10 REFCLK1 RTM_REFCLK1 312.5 MHz MGTREFCLK1_112_W5,6 Bank 116 X5 250 MHz RTM_REFCLK0 250 MHz X5 Pkg=IDT8N4Q001 Artix T200 DTM_CLK[0:2] DTM_CLK[0:2] Bank 15 MRCC/SRCC DTM_REFCLK ‘PCIE_REFCLK’ N/L MGTREFCLK0_112_U5,6 TTC_CLK[0:1] REFCLK0 X3 Pkg=LCC6 TTC_SCL/SDA TTC DTM_RTM_LS0 DTM_TO_RTM_LS0 SI5338A 160MHz variable clock generator HSIO-II TTC RMB BUSY

COB Clock Source Requirements and Constraints Current COB+RTM rely on external TTC source to generate 160 MHz Cannot touch the 100MHz oscillator on the COB – needed for PCIe control Only needs 120 MHz MGTrefclk for DPM, while DTM itself doesn’t need to run GBT on the COB For DPM to run GBT and TTC at the same time, both 160 MHz and 120MHz clocks are needed and can only come from the DTM TTC distribution 160 MHz and 120 MHz clocks need to be synched to LHC TTC clock in real operation

Existing COB + RTM Clock Configuration 100 MHz PCIE_REFCLK PCIE_REFCLK MGTREFCLK0_112_U5,6 DPM Bay 0 REFCLK0 Z045-A N/L ZYNQ Z030 REFCLK0 X7 156.25 MHz X3 MGTREFCLK0_110_AA7,8 REFCLK1 REFCLK1 250 MHz MGTREFCLK0_111_U7,8 MGTREFCLK1_112_W5,6 X8 250 MHz MGTREFCLK0_111_W7,8 X5 REFCLK2 DPM0_CLK0 Fan out Bank 12 MRCC DPM_CLK[1:2] DPM0_CLK[1:2] DPM_CLK0 Bank 12 regular I/O 160 MHz DPM_CLK[1:2] DPM1_CLK[1:2] Bank 12 MRCC DPM_CLK[1:2] MGTREFCLK0_111_W7,8 REFCLK2 DPM1_CLK0 X9 Bank 13 MRCC Bank 13 SRCC REFCLK0 156.25 MHz Bank 12 regular I/O MGTREFCLK0_110_AA7,8 DTM MGTREFCLK0_111_U7,8 250 MHz 1 2 3 4 5 REFCLK1 Z045-B X10 DTM_TO_RTM_LS[0-5] Other DPM Bays DTM_RTM_LS[0-5] P3 RTM TTC RMB 160 MHz DATA LOL SD CLK LOCKED TTC RX logic BUSY TTC BUSY

COB + RTM with new ‘GBT’ RMB X5 100 MHz PCIE_REFCLK PCIE_REFCLK MGTREFCLK0_112_U5,6 DPM Bay 0 REFCLK0 Z045-A N/L ZYNQ Z030 REFCLK0 X7 156.25 MHz X3 MGTREFCLK0_110_AA7,8 REFCLK1 REFCLK1 250 MHz MGTREFCLK0_111_U7,8 MGTREFCLK1_112_W5,6 X8 250 MHz MGTREFCLK0_111_W7,8 X5 REFCLK2 DPM0_CLK0 Fan out Bank 12 MRCC 120 MHz DPM_CLK[1:2] DPM0_CLK[1:2] DPM_CLK0 Bank 12 regular I/O DPM_CLK[1:2] DPM1_CLK[1:2] Bank 12 MRCC DPM_CLK[1:2] MGTREFCLK0_111_W7,8 REFCLK2 DPM1_CLK0 160 MHz X9 Bank 13 MRCC Bank 13 SRCC REFCLK0 156.25 MHz Bank 12 regular I/O MGTREFCLK0_110_AA7,8 DTM MGTREFCLK0_111_U7,8 250 MHz 1 2 3 4 5 REFCLK1 Z045-B X10 DTM_TO_RTM_LS[0-5] Other DPM Bays DTM_RTM_LS[0-5] P3 RTM DTM_SCL/SDA GBT RMB SI5338A TTC_CLK160 TTC_CLK120 DATA SD LOL BUSY 160 MHz TTC RX logic LOCKED CLK TTC BUSY

New ‘GBT’ RMB for COB RTM New GBT RMB design from Larry Added SI5338A variable frequency clock generator with either local oscillator or TTC 160 MHz clock inputs Remapped DTM_RTM_LS[0-5]: Chan 0,1 (MRCC) = 160 MHz, 120 MHz clocks Chan 2 (SRCC) = TTC data Chan 3 (SRCC) = New dedicated DTM I2C Chan 4 (I/O) split one LVDS pair into two CMOS25 for a) TTC link Signal Detector (SD) b) RMB CDR locked (LOL) Chan 5 (I/O) = BUSY as before New DTM I2C controls SI5338A configuration and monitors SD,LOL,LOCKED,BUSY on RMB