Categorical Data HGEN619 2006.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Bivariate analysis HGEN619 class 2007.
Using MX for SEM analysis. Using Lisrel Analysis of Reader Reliability in Essay Scoring Votaw's Data Tau-Equivalent Model DA NI=4 NO=126 LA ORIGPRT1 WRITCOPY.
Elizabeth Prom-Wormley & Hermine Maes
The use of Cholesky decomposition in multivariate models of sex-limited genetic and environmental effects Michael C. Neale Virginia Institute for Psychiatric.
(Re)introduction to Mx Sarah Medland. KiwiChinese Gooseberry.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Summarizing Data Nick Martin, Hermine Maes TC21 March 2008.
Heterogeneity Hermine Maes TC19 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Introduction to Linkage
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Continuous heterogeneity Shaun Purcell Boulder Twin Workshop March 2004.
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Genetic Dominance in Extended Pedigrees: Boulder, March 2008 Irene Rebollo Biological Psychology Department, Vrije Universiteit Netherlands Twin Register.
Univariate Analysis Hermine Maes TC19 March 2006.
Missing Data Michael C. Neale International Workshop on Methodology for Genetic Studies of Twins and Families Boulder CO 2006 Virginia Institute for Psychiatric.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Thresholds and ordinal data Sarah Medland – Boulder 2010.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Matrix Algebra International Workshop on Methodology for Genetic Studies Boulder Colorado March 2006.
Multivariate Threshold Models Specification in Mx.
Power and Sample Size Adapted from: Boulder 2004 Benjamin Neale Shaun Purcell I HAVE THE POWER!!!
Karri Silventoinen University of Helsinki Osaka University.
Heterogeneity Hermine Maes TC21 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
Power and Sample Size Boulder 2004 Benjamin Neale Shaun Purcell.
Combined Linkage and Association in Mx Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Boulder 2009.
GENETIC ANALYSIS OF BINARY and CATEGORICAL TRAITS PART ONE.
Univariate Analysis Hermine Maes TC21 March 2008.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Means, Thresholds and Moderation Sarah Medland – Boulder 2008 Corrected Version Thanks to Hongyan Du for pointing out the error on the regression examples.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
Frühling Rijsdijk & Kate Morley
Categorical Data Frühling Rijsdijk 1 & Caroline van Baal 2 1 IoP, London 2 Vrije Universiteit, A’dam Twin Workshop, Boulder Tuesday March 2, 2004.
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Linkage in Mx & Merlin Meike Bartels Kate Morley Hermine Maes Based on Posthuma et al., Boulder & Egmond.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Extended Pedigrees HGEN619 class 2007.
Intro to Mx HGEN619 class 2005.
HGEN Thanks to Fruhling Rijsdijk
Multivariate Analysis
Ordinal Data Sarah Medland.
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Linkage and Association in Mx
Fitting Univariate Models to Continuous and Categorical Data
BINARY and CATEGORICAL TRAITS
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
Univariate Analysis HGEN619 class 2006.
Ordinal data, matrix algebra & factor analysis
More on thresholds Sarah Medland.
Liability Threshold Models
Heterogeneity Danielle Dick, Hermine Maes,
(Re)introduction to Mx Sarah Medland
Sarah Medland faculty/sarah/2018/Tuesday
More on thresholds Sarah Medland.
BOULDER WORKSHOP STATISTICS REVIEWED: LIKELIHOOD MODELS
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Netherlands Twin Register (NTR)
Presentation transcript:

Categorical Data HGEN619 2006

Univariate Genetic Analysis Saturated Models Free thresholds Univariate Models Variances partitioned in a, c/d and e Free thresholds (or not)

Practical Example Dataset: VTR FF1 interview MDD (DSM-IIIR) Adults: 18-60 years N individuals MZF (zyg=1): 1180 DZF (zyg=2): 880

Contingency Tables MZF DZF T2 T1 - + 329 83 201 94 95 82 63 -: unaffected +: affected

Raw Dataset usmdd.ord 1 0 0 2 0 0 1 0 0 2 0 1 1 0 1 2 0 1 1 0 1 2 1 0 1 1 0 2 1 0 1 1 1 2 1 0 1 1 1 2 1 1

Frequency Data: usmdd?.ctf MZ 0 0 329 0 1 83 1 0 95 1 1 83 DZ 0 0 201 0 1 94 1 0 82 1 1 63

Saturated Model

Estimate thresholds & correlations – Saturated. US MDD data – females ! Estimate thresholds & correlations – Saturated ! US MDD data – females contingency tables #NGroups 2 #define nvar2 2 Title 1: MZ data Data NInput=2 CTable 2 2 329 83 95 83 Begin Matrices; T Full nvar2 1 Free X Stnd nvar2 nvar2 Free End Matrices; Start 1 T 1 1 - T nvar2 1 Threshold T; Correlation X; Option RSiduals End Title 2: DZ data Data NInput=2 CTable 2 2 201 94 82 63 Begin Matrices; T Full nvar2 1 Free X Stnd nvar2 nvar2 Free End Matrices; Start 1 T 1 1 - T nvar2 1 Threshold T; Correlation X; Option RSiduals Option Multiple Issat End usmddsatct.mx

Estimate thresholds & correlations – Saturated. US MDD data – females ! Estimate thresholds & correlations – Saturated ! US MDD data – females raw ordinal data #NGroups 2 #define nvar2 2 Title 1: MZ data Data NInput=3 Ordinal File=usmdd.ord Labels zyg mdd1 mdd2 Select if zyg=1 Select mdd1 mdd2 ; Begin Matrices; T Full 1 nvar2 Free X Stnd nvar2 nvar2 Free End Matrices; Start 1 T 1 1 - T 1 nvar2 Threshold T; Correlation X; Options RSiduals End Title 2: DZ data Data NInput=3 Ordinal File=usmddmz.ord Labels zyg mdd1 mdd2 Select if zyg=2 Select mdd1 mdd2 ; Begin Matrices; T Full 1 nvar2 Free X Stnd nvar2 nvar2 Free End Matrices; Start 1 T 1 1 - T 1 nvar2 Threshold T; Correlation X; Options RSiduals End usmddsatord.mx

Estimate thresholds & correlations – Saturated. US MDD data – females ! Estimate thresholds & correlations – Saturated ! US MDD data – females frequency data #NGroups 2 #define nvar2 2 Title 1: MZ data Data NInput=3 Ordinal File=usmddmz.ctf Labels mdd1 mdd2 frq Definition frq ; Begin Matrices; T Full 1 nvar2 Free X Stnd nvar2 nvar2 Free F Full 1 1 End Matrices; Start 1 T 1 1 - T 1 nvar2 Specify F frq Threshold T; Correlation X; Frequency F; End Title 2: DZ data Data NInput=3 Ordinal File=usmdddz.ctf Labels mdd1 mdd2 frq Definition frq ; Begin Matrices; T Full 1 nvar2 Free X Stnd nvar2 nvar2 Free F Full 1 1 End Matrices; Start 1 T 1 1 - T 1 nvar2 Specify F frq Threshold T; Correlation X; Frequency F; End usmddsatfrq.mx

Dat File: usmdd.dat Data NInput=3 Rectangular File=usmdd.ord Labels zyg mdd1 mdd2

Submodels: Equality of Thresholds MZ (group 1) DZ (group 2) par t1 t2 v1 cor v2 t3 t4 v3 v4 Full 1 2 3 4 5 6 II III

ACE Model

! Estimate variance components - ACED model ! US MDD data - females #NGroups 4 #define nvar 1 #define nvar2 2 Title 1: Model Parameters Calculation Begin Matrices; X Lower nvar nvar Free !a Y Lower nvar nvar !c Z Lower nvar nvar Free !e W Lower nvar nvar Free !d H Full 1 1 !0.5 Q Full 1 1 !0.25 End Matrices; Matrix H .5 Matrix Q .25 Label Row X add_gen Label Row Y com_env Label Row Z spec_env Label Row W dom_gen Begin Algebra; A= X*X'; !a^2 C= Y*Y'; !c^2 E= Z*Z'; !e^2 D= W*W'; !d^2 End Algebra; End usmddaces.mx

! Estimate variance components - ACED model ! US MDD data - females II Title 2: MZ data #include usmdd.dat Select if zyg =1 Select mdd1 mdd2 ; Begin Matrices =Group 1; T Full 1 nvar2 Free End Matrices; Thresholds T; Covariance A+C+E+D | A+C+D _ A+C+D | A+C+E+D; Option RSiduals; End Title 3: DZ data #include usmdd.dat Select if zyg =2 Select mdd1 mdd2 ; Begin Matrices =Group 1; T Full 1 nvar2 Free End Matrices; Thresholds T; Covariance A+C+E+D |H@A+C+Q@D _ H@A+C+Q@D|A+C+E+D; Option RSiduals End usmddaces.mx

! Estimate variance components - ACED model ! US MDD data - females III Title 4: Constrain var=1 Constraint Begin Matrices =Group 1; I Iden 1 1 End Matrices; Start .5 all St 1 T 2 1 1-T 2 1 nvar2 St 1 T 3 1 1-T 3 1 nvar2 Begin Algebra; P=A|C|E|D; End Algebra; Constraint A+C+E+D=I; !ADE model Option NDecimals=4 Option Sat=2508.004,2054 Option Multiple End !AE model Drop W 1 1 1 End !ACE model Free Y 1 1 1 !CE model Drop X 1 1 1 !E model Drop Y 1 1 1 usmddaces.mx

Submodels Matrix / Model X (a) Y (c) Z (e) W (d) Cor NP Mean NP NP DF *1 constraint: A+C+D+E=1 Matrix / Model X (a) Y (c) Z (e) W (d) Cor NP Mean NP NP DF Sat 2 4 6+1* ADE Free 7 AE Drop 6 1 ACE CE E 5

Goodness-of-Fit -2LL df P2 p AIC Sat ADE AE 1 ACE CE E 2

Thresholds: A quick review When using raw ordinal data, it is necessary to give Mx starting values for thresholds Thresholds indicate the point at which the variable transitions from one level to the next For a variable with n categories, there will always be n – 1 thresholds

Thresholds for Multiple Level Variables CUMULATIVE thresholds: Threshold 1, 61% have a score below 1  z-score of 0.28 Threshold 2, 77% have a score below 2  z-score of 0.74 Threshold 3, 86% have a score below 3  z-score of 1.08 INCREMENTAL thresholds: Threshold 1 = 0.28 Threshold 2 = 0.74 – 0.28 = 0.46 Threshold 3 = 1.08 – 0.74 = 0.34