Center tap Full-Wave Rectifier.

Slides:



Advertisements
Similar presentations
AC  DC: Using a full-wave diode rectifier circuit (used in the music system final project) The 20:1 turns ratio transformer here reduces the rms voltage.
Advertisements

Kazi Md. Shahiduzzaman Lecturer, EEE,NUB
Chapter 2 AC to DC CONVERSION (RECTIFIER)
Regulated Linear Power Supply
Diode Applications Half wave rectifier and equivalent circuit with piece-wise linear model Ideal Vc Rf vi v i = VM sin (t)
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Electronic Circuits POWER SUPPLIES.
Principles & Applications
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 4 Power Supplies.
Diode Circuits: Applications
PALESTINE POLYTECHNIC UNIVERSITY (PPU) POWER ELECTRONICS Dr. Sameer Khader Spring 2003 / /2006.
Engineering H192 - Computer Programming Gateway Engineering Education Coalition Lab 4P. 1Winter Quarter Analog Electronics Lab 4.
Rectification – transforming AC signal into a signal with one polarity – Half wave rectifier Recall Lecture 6 Full Wave Rectifier – Center tapped – Bridge.
9/27/2004EE 42 fall 2004 lecture 121 Lecture #12 Circuit models for Diodes, Power supplies Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8 Then.
RECTIFICATION Normal household power is AC while batteries provide DC, and converting from AC to DC is called rectification. Diodes are used so commonly.
Mechatronics 1 Filters & Regulators.
Principles & Applications
Engineering H192 - Computer Programming The Ohio State University Gateway Engineering Education Coalition Lab 3P. 1Winter Quarter Analog Electronics Lab.
By Squadron Leader Zahid Mir CS&IT Department, Superior University PHY-BE -09 Rectifier Filters.
Diode: Application Half-Wave Rectifier
Recall Lecture 6 Rectification – transforming AC signal into a signal with one polarity Half wave rectifier Full Wave Rectifier Center tapped Bridge Rectifier.
Half Wave rectifier Full wave rectifier Mathematical Examples
Electronics Principles & Applications Fifth Edition Chapter 4 Power Supplies ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Regulated Power Supplies
1.0 LINEAR DC POWER SUPPLY The importance of DC Power Supply Circuit For electronic circuits made up of transistors and/or ICs, this power source.
Example Determine η, FF, RF, TUF, PIV of the diode, CF of the input current, input PF.
1 Surge Current in the Capacitor filter Initially the filter capacitor is uncharged. At the instant the switch is closed, voltage is connected to the bridge.
Rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which.
Chapter 1 Common Diode Applications Basic Power Supply Circuits.
6. Unregulated Power Supply Design
CREATED BY GROUP=01 GROUP=01 Darshan Dave Ritu Dave Kishan Desai Malek Sohil Alpha collage of Engineering.
PEAK INVERSE VOLTAGE Using the ideal diode model, the PIV of each diode in the bridge rectifier is equal to V2.This is the same voltage that was applied.
CSE251 Diode Applications – Rectifier Circuits. 2 Block diagram of a DC power supply. One of the most important applications of diodes is in the design.
NEGATIVE HALF WAVE RECTIFIERS The analysis of negative half wave rectifier is nearly identical to that of positive half wave rectifier. The only difference.
DIODES AND APPLICATIONS
Electronics Technology Fundamentals Chapter 18 Basic Diode Circuits.
Full Wave Rectifier Circuit with Working Theory
Full Wave Rectifier NavigationTutorial: 6 of 8 The Full Wave Rectifier In the previous Power Diodes tutorial we discussed ways of reducing the ripple or.
Chapte r 2 Diode applications Ir. Dr. Rosemizi Abd Rahim 1 Ref: Electronic Devices and Circuit Theory, 10/e, Robert L. Boylestad and Louis Nashelsky.
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
CALCULATING CURRENTS Once the peak and average load voltage values are known, it is easy to determine the values of IL(pk) and Iave with the help of Ohm’s.
Half-wave Rectifier.
Diode Circuits and DC Power Supply
Recall Lecture 7 Voltage Regulator using Zener Diode
Chapter 2: Diode Applications
Diode Circuit Analysis 2
Rectifiers Sri. S. L. Kulkarni Associate Professor & Head
Recall-Lecture 6 Zener effect and Zener diode Avalanche Effect
Prepared by(Group no. 3):
Rectifiers and Filters
Recall Lecture 7 Voltage Regulator using Zener Diode
Fault detection Lecture (3).
Diode Applications Half wave rectifier and equivalent circuit with piece-wise linear model Ideal Vc Rf vi v i = VM sin (t)
WELCOME TO THE PRESENTATION Dr. S. Narasimha TKRCET By
Principles & Applications
Common Diode Applications
Diode Applications.
RECTIFIERS.
Power Supplies AIM: To understand the simple power supply in terms of the transformer, rectification, smoothing and regulation. PRIOR KNOWLEDGE: A.C.
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8
Review Half Wave Full Wave Rectifier Rectifier Parameters
Electronic Fundamental Muhammad Zahid
Figure 2.43 Full-wave voltage doubler.
Electronic Fundamental Muhammad Zahid
Thought of the Day Soon or late, the man who wins is the man
Lecture No# 3 Prepared by: Engr. Qurban Ali Memon
Review Half Wave Full Wave Rectifier Rectifier Parameters
Lecture No# 4 Prepared by: Engr. Qurban Ali Memon
Review Half Wave Full Wave Rectifier Rectifier Parameters
Presentation transcript:

Center tap Full-Wave Rectifier

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure 1. The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached to the centre of the winding. The voltage from the centre tap to either end terminal on this winding is equal to one half of the total voltage measured end-to-end. Circuit Operation Figure 12 shows the operation during the positive half cycle of the full wave rectifier. Note that diode D1 is forward biased and diode D2 is reverse biased. Note the direction of the current through the load.

During the negative half cycle, (figure 2) the polarity reverses. Diode D2 is forward biased and diode D1 is reverse biased. Note that the direction of current through the load has not changed even though the secondary voltage has changed polarity. Thus another positive half cycle is produced across the load.

Calculating Load Voltage and Currents Using the ideal diode model, the peak load voltage for the full wave rectifier is Vm . The full wave rectifier produces twice as many output pulses as the half wave rectifier. This is the same as saying that the full wave rectifier has twice the output frequency of a half wave rectifier. For this reason, the average load voltage (i.e. DC output voltage) is found as Vave=2Vm/pi……..1 Figure 3 below illustrates the average dc voltage for a full wave rectifier.

Peak Inverse Voltage When one of the diodes in a full-wave rectifier is reverse biased, the peak voltage across that diode will be approximately equal to Vm. This point is illustrated in figure 2. With the polarities shown, D1 is conducting and D2 is reverse biased. Thus the cathode of D1 will be at Vm. Since this point is connected directly to the cathode of D2, its cathode will also be Vm. With –Vm applied to the anode of D2, the total voltage across the diode D2 is 2Vm. Therefore, the maximum reverse voltage across either diode will be twice the peak load voltage. PIV =2Vm (2)

Full-Wave Rectifier with Capacitor filter Similar to the half-wave rectifier, smoothing is performed by a large value capacitor connected across the load resistance (as shown in figure 4) to act as a reservoir, supplying current to the output when the varying DC voltage from the rectifier is falling. The diagram below shows the unsmoothed varying DC (thin line) and the smoothed DC (thick line). The capacitor charges quickly near the peak of the varying DC, and then discharges as it supplies current to the output.

Note that smoothing significantly increases the average DC voltage to almost the peak value. However, smoothing is not perfect due to the capacitor voltage falling a little as it discharges, giving a small ripple voltage. For many circuits a ripple which is 10% of the supply voltage is satisfactory and the equation below gives the required value for the smoothing capacitor.

In the full-wave circuit, the capacitor discharges for only a half-cycle before being recharged. Hence the capacitance required is only half as much in the full-wave circuit as for the half-wave circuit. C= IL T/ 2V p -p …………(3)

Thank You