Chapter 5 Link Layer A note on the use of these ppt slides:

Slides:



Advertisements
Similar presentations
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Advertisements

Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5a-1 Chapter 5 Data Link Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Link Layer: Introduction Some terminology: r hosts and routers are nodes (bridges and switches too) r communication channels that connect.
5: DataLink Layer5a-1 MAC Sublayer. 5: DataLink Layer5a-2 Multiple Access Links and Protocols Two types of “links”: r point-to-point m PPP for dial-up.
5: DataLink Layer5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Ethernet.
5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Link-layer Addressing r Ethernet.
1 Link Layer Message M A B Problem: Given a message M at a node A consisting of several packets, how do you send the packets to a “neighbor” node B –Neighbor:
DataLink Layer session 1 TELE3118: Network Technologies Week 2: Data Link Layer Framing, Error Control, Multiple Access Some slides have been taken.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
5: DataLink Layer5-1 Link Layer – Error Detection/Correction and MAC.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
6: Wireless and Mobile Networks Wireless LANs.
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
Lecture 16 Random Access protocols r A node transmits at random at full channel data rate R. r If two or more nodes “collide”, they retransmit at random.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Mao W07 Multiple Access EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement:
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 3: MAC Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
4-1 Last time □ Link layer overview ♦ Services ♦ Adapters □ Error detection and correction ♦ Parity check ♦ Internet checksum ♦ CRC □ PPP ♦ Byte stuffing.
Chapter 12 Multiple Access Figure 12.1 Data link layer divided into two functionality-oriented sublayers Figure 12.2 Taxonomy of multiple-access protocols.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer multiple.
Medium Access Control NWEN302 Computer Network Design.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
4: DataLink Layer1 Multiple Access Links and Protocols Three types of “links”: r point-to-point (single wire, e.g. PPP, SLIP) r broadcast (shared wire.
5: DataLink Layer5-1 The Data Link Layer Chapter 5 Kurose and Ross Today 5.1 and 5.3.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
Multiple Access Links and Protocols
5: DataLink Layer 5a-1 Multiple Access protocol. 5: DataLink Layer 5a-2 Multiple Access Links and Protocols Three types of “links”: r point-to-point (single.
Data Link Layer. Useful References r Wireless Communications and Networks by William Stallings r Computer Networks (third edition) by Andrew Tanenbaum.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r link layer services r error detection, correction r multiple access protocols and LANs.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r Understand principles behind data link layer services: m error detection, error correction.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r Understand principles behind data link layer services: m error detection, error correction.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, error correction.
Transport Layer 3-1 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5-1 Slotted ALOHA Assumptions r all frames same size r time is divided into equal size slots, time to transmit 1 frame r nodes start to.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Example DLL Protocols 1. High-Level Data Link Control (HDLC).
Link Layer 5.1 Introduction and services
Random Access Protocols
Chapter 5 Link Layer and LANs
Chapter 6 Wireless and Mobile Networks
Computer Communication Networks
Chapter 5: The Data Link Layer
CS 1652 Jack Lange University of Pittsburgh
Multiple Access Mahesh Jangid Assistant Professor JVW University.
Session 15 INST 346 Technologies, Infrastructure and Architecture
Chapter 6 Wireless and Mobile Networks
CS 457 – Lecture 6 Ethernet Spring 2012.
Chapter 5: The Data Link Layer
Services of DLL Framing Link access Reliable delivery
Multiple access.
2017 session 1 TELE3118: Network Technologies Week 2: Data Link Layer Framing, Error Control, Multiple Access Slides have been adapted from: Computer.
2012 session 1 TELE3118: Network Technologies Week 2: Data Link Layer Framing, Error Control, Multiple Access Some slides have been taken from: Computer.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 3 Transport Layer
Datornät /Computer Networks 2016
Computer Networking: A Top Down Approach From Kurose & Ross Book
Multiple Access Methods
Overview Jaringan Komputer (3)
Channel Allocation Problem/Multiple Access Protocols Group 3
Link Layer and LANs Not everyone is meant to make a difference. But for me, the choice to lead an ordinary life is no longer an option 5: DataLink Layer.
Datornät /Computer Networks 2016
Link Layer 5.1 Introduction and services
Link Layer: Multiple Access
Multiple Access Control (MAC) Protocols
Presentation transcript:

Chapter 5 Link Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved The course notes are adapted for Bucknell’s CSCI 363 Xiannong Meng Spring 2016 Link Layer

CSMA (carrier sense multiple access) CSMA: listen before transmit: if channel sensed idle: transmit entire frame if channel sensed busy, defer transmission human analogy: don’t interrupt others! Link Layer

spatial layout of nodes CSMA collisions spatial layout of nodes collisions can still occur: propagation delay means two nodes may not hear each other’s transmission collision: entire packet transmission time wasted distance & propagation delay play role in in determining collision probability Link Layer

CSMA/CD (collision detection) CSMA/CD: carrier sensing, deferral as in CSMA collisions detected within short time colliding transmissions aborted, reducing channel wastage collision detection: easy in wired LANs: measure signal strengths, compare transmitted, received signals difficult in wireless LANs: received signal strength overwhelmed by local transmission strength human analogy: the polite conversationalist Link Layer

CSMA/CD (collision detection) spatial layout of nodes Link Layer

Ethernet CSMA/CD algorithm 1. NIC receives datagram from network layer, creates frame 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits. 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame ! 4. If NIC detects another transmission while transmitting, aborts and sends jam signal 5. After aborting, NIC enters binary (exponential) backoff: after mth collision, NIC chooses K at random from {0,1,2, …, 2m-1}. NIC waits K·512 bit times, returns to Step 2 longer backoff interval if more collisions Link Layer

CSMA/CD efficiency (1) tprop = max prop delay between 2 nodes in LAN ttrans = time to transmit max-size frame efficiency goes to 1 as tprop goes to 0, or as ttrans goes to infinity better performance than ALOHA: and simple, cheap, decentralized! Schwartz (1987), page 445 says e = 1/(1+6.44 a), derivation from probability. Link Layer

CSMA/CD efficiency (2) Performance of the CSMA/CD can be determined by one single number! Let a = tpro / ttrans Some examples: a = 0.1, efficiency = 0.667 a = 0.01, efficiency = 0.952 How to make a small, thus higher efficiency? Shorter cables  smaller tpro Slower(!!!) network  large trans Larger packets  large trans By Simon Lam of UT Austin (1979): http://www.cs.utexas.edu/ftp/techreports/tr79-113.pdf Link Layer

“Taking turns” MAC protocols channel partitioning MAC protocols: share channel efficiently and fairly at high load inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node! random access MAC protocols efficient at low load: single node can fully utilize channel high load: collision overhead “taking turns” protocols look for best of both worlds! Link Layer

“Taking turns” MAC protocols polling: master node “invites” slave nodes to transmit in turn typically used with “dumb” slave devices concerns: polling overhead latency single point of failure (master) data poll master data slaves Link Layer

“Taking turns” MAC protocols token passing: control token passed from one node to next sequentially. token message concerns: token overhead latency single point of failure (token) T (nothing to send) T data Link Layer

Cable access network … multiple 40Mbps downstream (broadcast) channels Internet frames,TV channels, control transmitted downstream at different frequencies cable headend cable modem splitter … CMTS cable modem termination system upstream Internet frames, TV control, transmitted upstream at different frequencies in time slots ISP multiple 40Mbps downstream (broadcast) channels single CMTS transmits into channels multiple 30 Mbps upstream channels multiple access: all users contend for certain upstream channel time slots (request slots), once granted, requesting data can be sent. Combination of random access (request slots), time division (request data slots), and frequency division (separate channels for signal and data)!

Cable access network DOCSIS: data over cable service interface spec MAP frame for Interval [t1, t2] Residences with cable modems Downstream channel i Upstream channel j t1 t2 Assigned minislots containing cable modem upstream data frames Minislots containing minislots request frames cable headend CMTS DOCSIS: data over cable service interface spec FDM over upstream, downstream frequency channels TDM upstream: some slots assigned, some have contention downstream MAP frame: assigns upstream slots request for upstream slots (and data) transmitted random access (binary backoff) in selected slots Link Layer

Summary of MAC protocols channel partitioning, by time, frequency or code Time Division, Frequency Division random access (dynamic), ALOHA, S-ALOHA, CSMA, CSMA/CD carrier sensing: easy in some technologies (wire), hard in others (wireless) CSMA/CD used in Ethernet CSMA/CA used in 802.11 taking turns polling from central site, token passing bluetooth, FDDI, token ring hybrid DOCSIS combines random access, TDMA, and FDMA Link Layer