Warm Up Find the perimeter and area of each polygon.

Slides:



Advertisements
Similar presentations
Volume of Prisms and Cylinders
Advertisements

Surface Area of Prisms and Cylinders 10-4 Holt Geometry.
Surface area and Volumes of Prisms
Volume of a pyramid and a cone
Surface Area of 10-4 Prisms and Cylinders Warm Up Lesson Presentation
CONFIDENTIAL 1 Geometry Surface Area of Prisms and Cylinders.
Entry Task.
Surface Area of 10-5 Pyramids and Cones Warm Up Lesson Presentation
Volume of Pyramids and Cones
Surface Area of 12-3 Pyramids and Cones Warm Up Lesson Presentation
Warm Up Find the perimeter and area of each polygon.
Warm Up Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 3. b = 40, c = 41 4.
Surface Area of 12.2 Prisms and Cylinders Warm Up Lesson Presentation
Objectives Learn and apply the formula for the volume of a pyramid.
12-5 Volume of Pyramids and Cones Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objectives Learn and apply the formula for the surface area of a pyramid. Learn and apply the formula for the surface area of a cone.
Warm Up Classify each polygon. 1. a polygon with three congruent sides 2. a polygon with six congruent sides and six congruent angles 3. a polygon with.
Volume of Pyramids and Cones
Holt Geometry 10-6 Volume of Prisms and Cylinders 10-6 Volume of Prisms and Cylinders Holt Geometry.
Warm Up Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 3. b = 40, c = 41 4.
Holt Geometry 10-4 Surface Area of Prisms and Cylinders 10-4 Surface Area of Prisms and Cylinders Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Volume of Prisms and Cylinders
Holt Geometry 10-6 Volume of Prisms and Cylinders Warm Up Find the area of each figure. Round to the nearest tenth. 1. an equilateral triangle with edge.
Warm Up Find the perimeter and area of each polygon. 1. a rectangle with base 14 cm and height 9 cm 2. a right triangle with 9 cm and 12 cm legs 3. an.
Holt Geometry 10-6 Volume of Prisms and Cylinders 10-6 Volume of Prisms and Cylinders Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Warm Up Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 3. b = 40, c = 41 4.
Holt McDougal Geometry 10-4 Surface Area of Prisms and Cylinders 10-4 Surface Area of Prisms and Cylinders Holt Geometry Warm Up Warm Up Lesson Presentation.
Warm Up Find the perimeter and area of each polygon. 1. a rectangle with base 14 cm and height 9 cm 2. a right triangle with 9 cm and 12 cm legs 3. an.
Learn and apply the formula for the surface area and volume of a prism. Learn and apply the formula for the surface area and volume of a cylinder. Objectives.
Learn and apply the formula for the surface area and volume of a pyramid. Learn and apply the formula for the surface area and volume of a cone. Objectives.
Entry Task. Land for Sale John has decided to sell his lakefront property. He can sell it for $315 a square foot. Look at the different calculations for.
Holt Geometry 11.4 Surface Area of Pyramids & Cones Learn and apply the formula for the surface area of a pyramid. Learn and apply the formula for the.
Entry Task. I can apply the formula for the surface area of a pyramid and cone. Learning Target Surface Areas of Pyramids Success Criteria: I can apply.
Holt McDougal Geometry 10-4 Surface Area of Prisms and Cylinders 10-4 Surface Area of Prisms and Cylinders Holt Geometry Warm Up Warm Up Lesson Presentation.
11.6 / 11.7: Volumes of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Prisms and Cylinders
Volume of Prisms and Cylinders
Warm Up Find the volume of each figure. Round to the nearest tenth, if necessary. 1. a square prism with base area 189 ft2 and height 21 ft 2. a regular.
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Pyramids and Cones
Prisms and cylinders have 2 congruent parallel bases.
Math Humor What happened to the 3D figure who robbed a bank? He got sent to prism.
Volume of Pyramids and Cones
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Prisms and Cylinders
Objectives Learn and apply the formula for the volume of a prism.
10.4 Surface Area of Prisms and Cylinders
3-D Shapes Topic 14: Lesson 5
Objectives Learn and apply the formula for the surface area of a prism. Learn and apply the formula for the surface area of a cylinder.
Volume of Pyramids and Cones
Volume of Pyramids and Cones
Volume of Pyramids and Cones
3-D Shapes Topic 14: Lesson 3
Surface Area of 10-4 Prisms and Cylinders Warm Up Lesson Presentation
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Pyramids and Cones
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Prisms and Cylinders
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Pyramids and Cones
Volume of Prisms and Cylinders
Volume of Pyramids and Cones
Warm Up Find the perimeter and area of each polygon.
Warm Up( Add to HW) Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 c = 25 b.
Presentation transcript:

Warm Up Find the perimeter and area of each polygon. 1. a rectangle with base 14 cm and height 9 cm 2. a right triangle with 9 cm and 12 cm legs 3. an equilateral triangle with side length 6 cm P = 46 cm; A = 126 cm2 P = 36 cm; A = 54 cm2

Objectives Learn and apply the formula for the surface area of a prism. Learn and apply the formula for the surface area of a cylinder.

Prisms and cylinders have 2 congruent parallel bases. A lateral face is not a base. The edges of the base are called base edges. A lateral edge is not an edge of a base. The lateral faces of a right prism are all rectangles. An oblique prism has at least one nonrectangular lateral face.

An altitude of a prism or cylinder is a perpendicular segment joining the planes of the bases. The height of a three-dimensional figure is the length of an altitude. Surface area is the total area of all faces and curved surfaces of a three-dimensional figure. The lateral area of a prism is the sum of the areas of the lateral faces.

The surface area of a right rectangular prism with length ℓ, width w, and height h can be written as S = 2ℓw + 2wh + 2ℓh.

Example 1A: Finding Lateral Areas and Surface Areas of Prisms Find the lateral area and surface area of the right rectangular prism. Round to the nearest tenth, if necessary. L = Ph P = 2(9) + 2(7) = 32 ft = 32(14) = 448 ft2 S = Ph + 2B = 448 + 2(7)(9) = 574 ft2

Check It Out! Example 1 Find the lateral area and surface area of a cube with edge length 8 cm. L = Ph = 32(8) = 256 cm2 P = 4(8) = 32 cm S = Ph + 2B = 256 + 2(8)(8) = 384 cm2

The lateral surface of a cylinder is the curved surface that connects the two bases. The axis of a cylinder is the segment with endpoints at the centers of the bases. The axis of a right cylinder is perpendicular to its bases. The axis of an oblique cylinder is not perpendicular to its bases. The altitude of a right cylinder is the same length as the axis.

Example 2A: Finding Lateral Areas and Surface Areas of Right Cylinders Find the lateral area and surface area of the right cylinder. Give your answers in terms of . The radius is half the diameter, or 8 ft. L = 2rh = 2(8)(10) = 160 in2 S = L + 2r2 = 160 + 2(8)2 = 288 in2

Check It Out! Example 2 Find the lateral area and surface area of a cylinder with a base area of 49 and a height that is 2 times the radius. Step 1 Use the circumference to find the radius. A = r2 Area of a circle 49 = r2 Substitute 49 for A. Divide both sides by  and take the square root. r = 7

Check It Out! Example 2 Continued Find the lateral area and surface area of a cylinder with a base area of 49 and a height that is 2 times the radius. Step 2 Use the radius to find the lateral area and surface area. The height is twice the radius, or 14 cm. L = 2rh = 2(7)(14)=196 in2 Lateral area S = L + 2r2 = 196 + 2(7)2 =294 in2 Surface area

Example 3: Finding Surface Areas of Composite Three-Dimensional Figures Find the surface area of the composite figure.

Example 3 Continued The surface area of the rectangular prism is . A right triangular prism is added to the rectangular prism. The surface area of the triangular prism is . Two copies of the rectangular prism base are removed. The area of the base is B = 2(4) = 8 cm2.

Example 3 Continued The surface area of the composite figure is the sum of the areas of all surfaces on the exterior of the figure. S = (rectangular prism surface area) + (triangular prism surface area) – 2(rectangular prism base area) S = 52 + 36 – 2(8) = 72 cm2

Example 4: Exploring Effects of Changing Dimensions The edge length of the cube is tripled. Describe the effect on the surface area.

Example 4 Continued original dimensions: edge length tripled: S = 6ℓ2 24 cm original dimensions: edge length tripled: S = 6ℓ2 S = 6ℓ2 = 6(8)2 = 384 cm2 = 6(24)2 = 3456 cm2 Notice than 3456 = 9(384). If the length, width, and height are tripled, the surface area is multiplied by 32, or 9.

Check It Out! Example 5 A piece of ice shaped like a 5 cm by 5 cm by 1 cm rectangular prism has approximately the same volume as the pieces below. Compare the surface areas. Which will melt faster? The 5 cm by 5 cm by 1 cm prism has a surface area of 70 cm2, which is greater than the 2 cm by 3 cm by 4 cm prism and about the same as the half cylinder. It will melt at about the same rate as the half cylinder.

Lesson Quiz: Part I Find the lateral area and the surface area of each figure. Round to the nearest tenth, if necessary. 1. a cube with edge length 10 cm 2. a regular hexagonal prism with height 15 in. and base edge length 8 in. 3. a right cylinder with base area 144 cm2 and a height that is the radius L = 400 cm2 ; S = 600 cm2 L = 720 in2; S  1052.6 in2 L  301.6 cm2; S = 1206.4 cm2

Lesson Quiz: Part II 4. A cube has edge length 12 cm. If the edge length of the cube is doubled, what happens to the surface area? 5. Find the surface area of the composite figure. The surface area is multiplied by 4. S = 3752 m2

Homework Worksheet 10-4