A DFT photoemission analysis

Slides:



Advertisements
Similar presentations
Brillouin Scattering With Simultaneous X-Ray Diffraction at GSECARS, Advanced Photon Source: Toward Determination of Absolute Pressure Scales Jay Bass.
Advertisements

Ab-initio study of work functions of element metal surface
Q u a n t u m N u m b e r s M r B o h r w a n t s t o k n o w.
How do atoms ARRANGE themselves to form solids? Unit cells
Surface Structure II crystal structure of elements Bravais lattices, Miller indices, Weber symbols close-packing, fcc, hcp, bcc, stacking faults low-index.
Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material.
Phonon focusing patterns in cubic crystals Litian Wang Østfold University College Fall 2007.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Brookhaven Science Associates U.S. Department of Energy A Few Comments on the Photoinjector Performance X.J. Wang National Synchrotron Light Source Brookhaven.
X-ray photoemission spectroscopy study on III-Nitride films
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Metal photocathodes for NCRF electron guns Sonal Mistry Loughborough University Supervisor: Michael Cropper (Loughborough University) Industrial Supervisor:
C. Giannetti 1 *, B. Revaz 2, F. Banfi 2, M. Montagnese 5, G. Ferrini 1, P. Vavassori 3, V. Metlushko 4 and F. Parmigiani 5,6 1 Dipartimento di Matematica.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 3: Microstructure of Solids Dr. Li Shi Department of Mechanical Engineering.
Atomic Scale Understanding of the Surface Intermixing during Thin Metal Film Growth 김상필 1,2, 이승철 1, 정용재 2, 이규환 1, 이광렬 1 1 한국과학기술연구원, 계산과학센터 2 한양대학교, 재료공학부.
1 st October Linear Collider workshop The CLIC/ILC common work plan progress J. Clarke and L. Rinolfi.
Today we test the clickers again. We now venture into the world of Metals Metals.
UIC m* : A Route to Ultra-bright Photocathodes W. Andreas Schroeder Joel A. Berger and Ben L. Rickman Physics Department, University of Illinois at Chicago.
UIC Physics Tessa Cooper Materials Science and Engineering Rutgers University Advisors: Dr. R. Klie and Q. Qiao Department of Physics, University of Illinois.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
3/6/ APS March Meeting1 Structure and interface properties of the electrolyte material Li 4 P 2 S 6 * Zachary D. Hood, a Cameron M. Kates, b,c.
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
Polycrystal theory and simulation Small scale crystal plasticity
Crystal Structure of Solids
§2.4 Crystal Structure and Complex Lattice
The Periodic Table and the Elements. What is the periodic table ? What information is obtained from the table ? How can elemental properties be predicted.
Electron Screening in deuterated targets ©Francesco Raiola Raiola Francesco, Fakultät für Physik und Astronomie Ruhr-Universität Bochum, D Bochum,
MOKE Results 137. Magnetic properties of CoMnGe ternary alloys Co Ge Mn Exhibits room.
Metal Photocathodes: Three-Step Model and Beyond W. Wan 1, H. A. Padmore 1, T. Vecchione 1 & T.-C. Chiang 2 1 ALS, Lawrence Berkeley National Laboratory.
Computational Physics (Lecture 24) PHY4370. DFT calculations in action: Strain Tuned Doping and Defects.
Physical Mechanism of the Transverse Instability in the Radiation Pressure Ion Acceleration Process Yang Wan Department of Engineering Physics, Tsinghua.
Quasiparticle Excitations and Optical Response of Bulk and Reduced-Dimensional Systems Steven G. Louie Department of Physics, University of California.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
What is the difference between a group and a
S2 SCIENCE CHEMICAL REACTIONS
Scattering controlled photoelectron escape from NEA – photocathodes
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
University of Illinois at Chicago
Electron Effective Mass: Emittance and Efficiency
Electrical resistance
FTIR MATRIX AND DFT STUDY OF THE VIBRATIONAL SPECTRUM OF CYCLIC ScC3
Tensile Strength (MPa)
Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys Sun Fangfang, Liu Nash Guiru, Li Qunying, Liu Enzuo, He.
ICFPAM’2015, March 30–April 2, Marrakech, Morocco 2015
Metals - Bonding and Crystal Structure
Metals - Bonding and Crystal Structure
Photoreactions of Hybrid Photocathodes Browse EMSL Capabilities at:
Soil processes and trace metals
3.14/3.40J/22.71J Recap Basic Crystallography and Miller Indices
آشنایی با دستگاه طيف سنجی جذب اتمی
PERIODIC TABLE OF ELEMENTS
PbTe(111): DFT analysis and experimental results
Dirac Line Nodes in Inversion Symmetric Crystals C. L. Kane & A. M
Rashba splitting of graphene on Ni, Au, or Ag(111) substrates
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
The Periodic Table Part I – Categories of Elements
Wei Liu Brookhaven National Laboratory
MATERIALS SCIENCE Materials science investigates the relationships between the structures and properties of materials.
Observation of Intrinsic Quantum Well States and
Department of Physics, Fudan University, Shanghai , China
Crystal Structure and Crystallography 재료구조론
Crystalline Solids (고체의 결정구조)
The Periodic Table Part I – Categories of Elements
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Quantum Monte Carlo in the Apuan Alps V
Table 1. Chemical Composition of Base Aluminium Alloys
Presentation transcript:

A DFT photoemission analysis Photocathode Physics for Photoinjectors (P3) 2016 Jefferson Laboratory, October 17-19, 2016 UIC HCP elemental metals: A DFT photoemission analysis W. Andreas Schroeder Physics Department University of Illinois at Chicago Tuo Li Benjamin Rickman National Science Foundation PHYS-1535279

UIC HCP Brillouin zone TWO primary crystal emission faces: (0001) (1000) (0110) A M L  K H TWO primary crystal emission faces: (0001)-face [basal-plane emission]    A direction (1010)-face    K direction - Band structure display convention: -M-K--A-L-H-A | L-M | K-H

UIC DFT results: Work functions − Thin-slab method (0.05eV uncertainty) Metal (0001) (eV) (1010) (eV) Be 5.61 (~10.0) 3.88 Mg 3.87 3.79 Zn 4.43 5.04 Cd 4.17 4.76 Ti 4.72 3.63 Zr 4.42 3.59 Hf 4.51 Sc 3.81 3.10 Y 3.60 3.08 - … consistent with literature values C. J. Fall et al., Journal of Physics: Condensed Matter 11, 2689 (1999) T. Li et al., Phys. Rev. ST Accel. Beams 18, 073401 (2015)

UIC Mg band structure Mg (0001)-face emission (1010)-face emission S. Chatterjee & P. Sinha, J. Phys. F: Metal Phys. 5, 2089 (1975)

UIC Mg(0001) emission Isotropic bands in transverse plane  ‘One-step’ DFT-based photoemission simulation ħω = 4.75eV (0001) = 3.87eV Isotropic bands in transverse plane  Radially symmetric emission; pT(1010) = pT(0110) T. Li et al., Phys. Rev. ST Accel. Beams, 18 (2015) 073401.

UIC Mg(1010) emission Anisotropic bands in transverse plane  ‘One-step’ DFT-based photoemission simulation (ħω = 4.67eV) (1010) = 3.66eV - pT(0001) pT(0110) Mg(poly) Anisotropic bands in transverse plane  Asymetric emission: pT(0110) = 1.33pT(0001) X.J. Wang et al., Proceedings of LINAC2002, Gyeongju, Korea.

UIC (1010)-Face Emission Anisotropy Mg www.phys.ufl.edu/fermisurface/

UIC (1010)-Face Emission Anisotropy www.phys.ufl.edu/fermisurface/ Mg Be www.phys.ufl.edu/fermisurface/

UIC (1010)-Face Emission Anisotropy www.phys.ufl.edu/fermisurface/ Mg Be Y www.phys.ufl.edu/fermisurface/

UIC (1010)-Face Emission Anisotropy www.phys.ufl.edu/fermisurface/ Mg Be Y Zr www.phys.ufl.edu/fermisurface/

UIC (1010)-Face Emission Anisotropy ; A = 0.577 = 1/3 Metal A(0001) Mg Metal A(0001) A(0110)/A(0001) Be 0.160 2.10 Mg 0.241 1.33 Y 0.222 1.08 Hf 0.281 Sc 0.221 1.05 Ti 0.295 1.04 Zr 0.287 1.03 Be Y Zr ; A = 0.577 = 1/3 T. Li et al., Phys. Rev. ST Accel. Beams, 18 (2015) 073401.

UIC Summary  DFT-based photoemission simulation of HCP metals (0001)-face [basal plane] emission  Radially symmetric pT (1010)-face emission  Asymmetric pT Be Mg Y Hf Sc Ti Zr More isotropic Simulations consistent with poly-Mg measurement  Predominantly (1010)-face emission  pT(ħω < ) not evaluated: Expect Robust surface state for Be(0001): eff  8.4eV, m*  1.5m0