Crystallography H. K. D. H. Bhadeshia Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships Martensitic transformations https://edge.edx.org/courses/MSM/C6/2013_Winter/about
https://edge.edx.org/courses/MSM/C6/2013_Winter/about
Introduction
Liquid Crystals (Z. Barber)
Form
Anisotropy (elastic modulus, MPa) Ag Mo
Polycrystals
2D lattices
The Lattice
Graphene, nanotubes
Centre of symmetry and inversion
Bravais Lattices Triclinic P Monoclinic P & C Orthorhombic P, C, I & F Tetragonal P & I Hexagonal Trigonal P Cubic P, F & I
Bravais Lattices
body-centred cubic (ferrite) face-centred cubic (austenite)
Bundy (1965)
Fe Ru 6d 2s Os Hs
Cohesive energy (eV/atom) Pure iron -65 -55 -45 -35 Cubic-P Cohesive energy (eV/atom) Diamond cubic Pure iron Hexagonal-P b.c.c c.c.p h.c.p 0.8 1.0 1.2 1.4 1.6 Normalised volume Paxton et al. (1990)
Crystallography H. K. D. H. Bhadeshia Introduction and point groups Stereographic projections Low symmetry systems Space groups Deformation and texture Interfaces, orientation relationships Martensitic transformations www.msm.cam.ac.uk/phase-trans/teaching.html Weiss zone rule Symmetry Crystal structure Point group symmetry Point group symbols Examples
Crystal Structure 1/2 1/2 1/2 1/2
lattice + motif = structure primitive cubic lattice motif = Cu at 0,0,0 Zn at 1/2, 1/2, 1/2
Lattice: face-centred cubic Motif: C at 0,0,0 C at 1/4,1/4,1/4 3/4 1/4 3/4 1/4 3/4 1/4 3/4 1/4 Lattice: face-centred cubic Motif: C at 0,0,0 C at 1/4,1/4,1/4
3/4 1/4 1/4 3/4
Lattice: face-centred cubic Motif: Zn at 0,0,0 S at 1/4,1/4,1/4 3/4 1/4 1/4 3/4 Lattice: face-centred cubic Motif: Zn at 0,0,0 S at 1/4,1/4,1/4
fluorite
2 diad 3 triad 4 tetrad 6 hexad Rotation axes 2 diad 3 triad 4 tetrad 6 hexad
Point groups 2m
Water and sulphur tetrafluoride have same point symmetry and hence same number of vibration modes - similar spectra
Sulphur tetraflouride
Gypsum 2/m
Epsomite 222
without high order axes
without order axes
If a direction [uvw] lies in a plane (hkl) then uh+vk+wl = 0 Weiss Law If a direction [uvw] lies in a plane (hkl) then uh+vk+wl = 0 [uvw] (hkl)
[110] (110) x y z y x z