Composites of polyamides and nanoparticles for dispersive micro-solid phase extraction R. Lucena Analytical Chemistry Department, University of Córdoba, Spain
Combining polyamides and MNPs Starting point Combining polyamides and MNPs Initial synthesis Application Nanocomposites in food analysis Versatility of polyamides Selecting the monomers Polyamides and SiO2 NPs Effect on superficial area Conclusions and further research
Starting point Potential of polymers, nanoparticles and their combination E.M. Reyes- Gallardo, R. Lucena, S. Cárdenas and M. Valcárcel. Bioanalysis (2015) 7, 1723–1730
Nanometric size Micrometric size Starting point Methods for the synthesis of composites Core shell NPs on the Polymer surface Polymer MNPs Polymer Nanometric size Micrometric size E.M. Reyes- Gallardo, R. Lucena, S. Cárdenas, M. Valcárcel. J. Chromatogr. A, 1271, 2013, 50– 55. M.C. Alcudia-León, R Lucena, S Cárdenas, M. Valcárcel J. Chromatogr. A, 1455, 2016, 57-64
M.C. Alcudia-León, R Lucena, S Cárdenas, M. Valcárcel Starting point Methods for the synthesis of composites Core shell Polymer MNPs Polymer Nanometric size M.C. Alcudia-León, R Lucena, S Cárdenas, M. Valcárcel J. Chromatogr. A, 1455, 2016, 57-64
Nanometric size Micrometric size Starting point Methods for the synthesis of composites NPs on the Polymer surface Polymer MNPs Polymer Nanometric size Micrometric size E.M. Reyes- Gallardo, R. Lucena, S. Cárdenas, M. Valcárcel. J. Chromatogr. A, 1271, 2013, 50– 55.
Naked polymeric fibers Starting point Methods for the synthesis of composites Electrospinning Naked polymeric fibers Composite
Combining polyamides and MNPs Non-polar hydrocarbon backbone Polyamide MNPs Polar amide group FeCl2 FeCl3 MNPs @SiO2 NH3 TEOS H2O Nylon 6 In formic acid MNPs-nylon 6 omposite Key factor: Switchable solubility of polyamides formic acid/water
Naked polymer Composite Combining polyamides and MNPs SEM micrographs Naked polymer Composite
Magnetic measurements Combining polyamides and MNPs ATR-IR Magnetic measurements
Evaluation of the extraction performance Combining polyamides and MNPs Evaluation of the extraction performance Dispersive micro-solid phase extraction procedure Selected PAHs in water HPLC-UV
Absolute extraction recovery 7.58% Application Nanocomposite in food analysis · Complex matrix · Effect of precipitation on BPA recovery · Extraction procedure in two steps Protein clot—fat-BPA Absolute extraction recovery 7.58%
Atenolol Propranolol Terephthalic acid Versatility Selecting the monomers Atenolol Propranolol Terephthalic acid
LODs in the range of 0.1-0.15 g/L Precision better than 9.6% Versatility Selecting the monomers LODs in the range of 0.1-0.15 g/L Precision better than 9.6% Relative recoveries 73.7-81.3%
Synthesis Stages Composite SiO2-polyamides Effect on superficial area Water Filtration Nylon-6 and SiO2 NPs in formic acid Washing Drying Continuous magnetic stirring Composite
S ≈ 17 m2/g S ≈ 87 m2/g SiO2-polyamides Effect on superficial area The synthetic procedure increases de superficial area of the materials S ≈ 17 m2/g Pure nylon after synthetic procedure S ≈ 87 m2/g Nylon precursor Synthesized composite
TEM micrographs SiO2-polyamides Effect on superficial area Silica NPs Composite Silica NPs
Extraction performance SiO2-polyamides Effect on superficial area Extraction performance Type of solid % of Nylon-6 % of Silica NPs A 100 B 75 25 C 50 D E1 Estrone E2 β-estradiol E3 Estriol Endogenous estrogens
Synergic combination of the polymer and NPs domains Easy and cheap synthesis Versatile The interaction of some analytes with the composites is too intense Manual synthesis Extend the procedure to other polymer/NPs composition Automate the syntheis Evaluate other elution steps
Composites of polyamides and nanoparticles for dispersive micro-solid phase extraction R. Lucena Analytical Chemistry Department, University of Córdoba, Spain