Descriptive statistics (2)

Slides:



Advertisements
Similar presentations
Slide 1 Spring, 2005 by Dr. Lianfen Qian Lecture 2 Describing and Visualizing Data 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data.
Advertisements

8.1 Types of Data Displays Remember to Silence Your Cell Phone and Put It In Your Bag!
CHAPTER 2 Basic Descriptive Statistics: Percentages, Ratios and rates, Tables, Charts and Graphs.
BIOSTATISTICS 5.5 MEASURES OF FREQUENCY BIOSTATISTICS TERMINAL OBJECTIVE: 5.5 Prepare a Food Specific Attack Rate Table IAW PEF 5.5.
Presenting information
Section 3.2 ~ Picturing Distributions of Data
Presentation of Data.
Basic Descriptive Statistics Healey, Chapter 2
Statistics - Descriptive statistics 2013/09/23. Data and statistics Statistics is the art of collecting, analyzing, presenting, and interpreting data.
Chapter 3: Graphic Presentation
Frequency Distributions and Graphs
BC Jung A Brief Introduction to Epidemiology - IV ( Overview of Vital Statistics & Demographic Methods) Betty C. Jung, RN, MPH, CHES.
With Statistics Workshop with Statistics Workshop FunFunFunFun.
Copyright © 2012 by Nelson Education Limited.2-1 Chapter 2 Basic Descriptive Statistics: Percentages, Ratios and Rates, Tables, Charts, and Graphs.
VARIABLE A measurable quantity which can vary from one individual or object to another is called a variable. A measurable quantity which can vary from.
Census A survey to collect data on the entire population.   Data The facts and figures collected, analyzed, and summarized for presentation and.
Chapter 3: Measures of Morbidity and Mortality Used in Epidemiology
Graphs Graphs are used to display data. They visually represent relationships between data. All graphs should have a title that identifies the variables.
 Frequency Distribution is a statistical technique to explore the underlying patterns of raw data.  Preparing frequency distribution tables, we can.
Chapter 2 Describing Data.
1 Copyright © Cengage Learning. All rights reserved. 3 Descriptive Analysis and Presentation of Bivariate Data.
Chapter 3: Organizing Data. Raw data is useless to us unless we can meaningfully organize and summarize it (descriptive statistics). Organization techniques.
Presenting Data in Charts, Graphs and Tables #1-8-1.
Data, Type and Methods of representation Dr Hidayathulla Shaikh.
Displaying Data  Data: Categorical and Numerical  Dot Plots  Stem and Leaf Plots  Back-to-Back Stem and Leaf Plots  Grouped Frequency Tables  Histograms.
Chapter 3 Descriptive Statistics for Qualitative Data.
Slide Copyright © 2009 Pearson Education, Inc. Ch. 3.1 Definition A basic frequency table has two columns: One column lists all the categories of.
Unit 2: Exploring Data with Graphs and Numerical Summaries Lesson 2-2a – Graphs for Categorical Data Probability & Stats Essential Question: How do we.
Chapter 2. **The frequency distribution is a table which displays how many people fall into each category of a variable such as age, income level, or.
Epidemiological measureas. How do we determine disease frequency for a population?
TYPES OF DATA Prof. Dr. Hamit ACEMOĞLU. The aim By the end of this lecture, students will be avare of types of data.
Exploratory Data Analysis
Descriptive Statistics: Tabular and Graphical Methods
Health Indicators.
Organizing Qualitative Data
Data Summarization.
Instructional Objectives:
Measurements Statistics
Graphical & Tabular Descriptive Techniques
Frequency Distributions and Graphs
Looking at data Visualization tools.
3.2 Picturing Distributions of Data
3 2 Chapter Organizing and Summarizing Data
CHAPTER 5 Basic Statistics
2.2 Bar Charts, Pie Charts, and Stem and Leaf Diagram
Basic Statistics Overview
Asst Prof Dr. Ahmed Sameer Al-Nuaimi - MBChB, MSc epi, PhD
Maths Unit 6 – Representing Data
Chapter 2 Describing Data: Graphs and Tables
College of Applied Medical Sciences
Frequency Distributions and Graphs
Lecture 3 part-2: Organization and Summarization of Data
INDIRECT STANDARDIZATION BY MBBSPPT.COM
Presenting Categorical & Discrete Data
Sexual Activity and the Lifespan of Male Fruitflies
Biostatistics College of Medicine University of Malawi 2011.
Descriptive Statistics
Descriptive Analysis and Presentation of Bivariate Data
Organizing Qualitative Data
Statistical Reasoning
How to present data or results in Thesis?
Purpose of Displaying Data
Constructing and Interpreting Visual Displays of Data
Epidemiological Measurements of health
Displaying Data – Charts & Graphs
Mortality rate = No. of deaths * K
Chapter 3: Graphic Presentation
Organizing, Displaying and Interpreting Data
Maths Unit 5 – Representing Data
Presentation transcript:

Descriptive statistics (2) Qualitative data

Another Classification numerical variable categorical variable binary variable/ dichotomous polytomous variable multinomial Ordinal (or ranked data)

Descriptive statistics for categorical data Relative number and application tabular and graphic methods

numerical method -Relative number Rate Proportion Ratio

Rate In contrast to the static nature of proportions, rates are aimed at measuring the occurrences of events during or after a certain time period. (1) Changes (2) Measures of Morbidity and Mortality

Change rate

Rate-Force Index A single figure that measures the forces of specific events, for example death, disease. mortality & morbidity) a= the frequency with which an event has occurred during some specified period of time. a+b= the number of person exposed to the risk of the event during the same period of time K=some number such as 100,1000,100,000

Vital Statistics-Rates as measure of health status. Incidence rate (morbidity) prevalence rate

Measures of Morbidity and Mortality Unlike change rates, these measures are proportions. 3 types of rate are commonly mentioned: crude, specific, & adjusted (or standardized) Crude rates are computed for an entire large group or population; they disregard factors such as age, gender, and race. Adjusted or standardized rates are used to make valid summary comparisons between 2 or more groups possessing different age distributions.

The annual crude death rate is defined as the number of deaths in a calendar year divided by the population on July 1 of that year . the 1980 population of California was 23,000,000(as estimated by July 1) and there were 190,237 deaths during 1980. Age-specific death rate

Proportion Composing index, The relative frequency of every composition taking account of special factor, such as race, sex, age group in a whole group. For example, sex proportion, race proportion, age proportion.

Homogenous in factors except for treatment Comparison of morbidity between two region. Sex, age distribution should be equal significantly. For the sex, age may be the factor that effect the mortality.

Rate & proportion The term rate is somewhat confusing; sometimes it is use d interchangeably with the term p oportion; sometimes it refers to a quantity of a very different nature. Sometimes, we focus on rates used interchangeably with proportions as measures of morbidity and mortality. Even when they refer to th e same things — measures of morbidity and mortality —there is some degree of difference between these two terms. In contrast to the static nature of proportions, rates are aimed at measuring the occurrences of events during or after a certain time period .

Ratio-comparison index C,d the frequency or relative frequency of occurrence of some events or terms,such as the person-doctor ratio,the person-hospital bed ratio. K used in ratio are mostly 1 and 100.

Sex ratio in China in 2000 =(65355units/64228 units)X100=106.74 1 unit=10,000 万 (wan)

Summary of relative number BMI group number N of patients ratio Composition % prevalence rate % (1) (2) (3) (4) (5) (6) low 212 10 — 3.10 4.72 Overweight 661 57 5.70 17.65 8.62 light obesity 1120 125 12.50 38.70 11.16 Middle obesity 825 112 11.20 34.67 13.58 Heavy obesity 102 19 1.90 5.88 18.63 total 2920 323 100.00 11.06 BMI (body mass index)

Note on calculation of relative number The denominator should not be two small ½=50%??? The average relative frequencies can not be added directly when n’s are not the same. Difference between force index & composition index disease No disease total rate male 20 40 0.5 female 45 15 60 0.75 65 35 100 0.65

Construction of statistical table A table is intended to communicate information, so it should be easy to read and understand. A statistical table has at least four major parts and some other minor parts. (1) The Title, (2) The Box Head (column captions),(3) The Stub (row captions), (4) The Body, (5) Notes.

Frequency table for categorical data

structure of Statistical table (1) The Title: must explain the contents of the table. (2) Column captions (3) Row captions (4) The Body: It is the main part of the table which contains the numerical information.

Displaying data graphically One of the first things that you may wish to do when you have entered your data onto a computer is to summarize them in some way so that you can get a 'feel' for the data. diagrams, tables or summary statistics. Diagrams are often powerful tools for conveying information about the data, for providing simple summary pictures

Bar Chart A bar chart shows data in the form of horizontal or vertical bars. Figure2.4 shows cancer of the oesophagus in the form of a bar chart, the heights of the bars being proportional to the mortality. The bars are separated by small gaps to indicate that the data are categorical or discrete.

Simple Bar Chart A simple bar diagram is used to represent only one variable. Bar chart can be used to show the relationship between two variables, one being quantitative and the other either qualitative or a quantitative variable which is grouped, as is time in years. Table2.10 Cancer of the oesophagus: standardized mortality rate per 100,000 per year, England and Wales, 1960-1969

Figure 2.4 Bar chart showing the relationship between mortality due to cancer of the oesophagus and year, England and Wales, 1960-1969

Multiple bar Multiple bar charts can be used to represent relationships between more than 2 variables. the relationship between children's reports of breathlessness and cigarette smoking by themselves and their parents.

Bar chart for quantitative data

Pie chart The pie chart or pie diagram, shows the relative frequency for each category by dividing a circle into sections, one for each category, so that the area of each section is proportional to the frequency in that category. And the angles of which are proportional to the relative frequency also.

Line Graphs A line graph is similar to a bar chart, but the horizontal axis represents time. Different ‘‘groups’’ are consecutive years, so that a line graph is suitable to illustrate how certain proportions change over time. In a line graph, the proportion associated with each year is represented by a point at the appropriate height; the points are then connected by straight lines.

Table 2.13 crude death rates for women between the years 1984 and 1987

Figure 3.9 Death rates for U.S.women,1984–1987

Line for quantitative data

Scatter diagrams The bar chart shows the relationship between two continuous variables such as vital capacity(Y) and weight(X) for 12 female students.

Table3.10 The relation of vital capacity and weight for 12 female students

Standardization rate Why? How? properties Direct method Indirect method properties 38

Why standardized rate? Why? There are different age structures in the populations in 1901 and 1981 . 39

Direct methods To eliminate this impact from different age proportion ,we can use standardization methods Direct methods select a standard population structure to calculate a adjusted rate. a standard population with specific age proportion must be great in size, steady, and representative.

Direct method for 1981 The age-standardized mortality rate for 1981 was 7.3 per 1000 men per year.There was much higher in 1901 than in 1981. 41

Indirect method If the observed age specific mortality is estimated poorly,or we have no observed age specific mortality we use indirect methods. 42

Thanks