Dr. Ofer Hadar Communication Systems Engineering Department

Slides:



Advertisements
Similar presentations
CSCE 643 Computer Vision: Template Matching, Image Pyramids and Denoising Jinxiang Chai.
Advertisements

November 12, 2013Computer Vision Lecture 12: Texture 1Signature Another popular method of representing shape is called the signature. In order to compute.
Basics of MPEG Picture sizes: up to 4095 x 4095 Most algorithms are for the CCIR 601 format for video frames Y-Cb-Cr color space NTSC: 525 lines per frame.
Technion - IIT Dept. of Electrical Engineering Signal and Image Processing lab Transrating and Transcoding of Coded Video Signals David Malah Ran Bar-Sella.
Image Indexing and Retrieval using Moment Invariants Imran Ahmad School of Computer Science University of Windsor – Canada.
December 5, 2013Computer Vision Lecture 20: Hidden Markov Models/Depth 1 Stereo Vision Due to the limited resolution of images, increasing the baseline.
{ Fast Disparity Estimation Using Spatio- temporal Correlation of Disparity Field for Multiview Video Coding Wei Zhu, Xiang Tian, Fan Zhou and Yaowu Chen.
Novel Point-Oriented Inner Searches for Fast Block Motion Lai-Man Po, Chi-Wang Ting, Ka-Man Wong, and Ka-Ho Ng IEEE TRANSACTIONS ON MULTIMEDIA, VOL.9,
Outline Introduction Introduction Fast Inter Prediction Mode Decision for H.264 – –Pre-encoding An Efficient Inter Mode Decision Approach for H.264 Video.
Mobile Motion Tracking using Onboard Camera Lam Man Kit CEG Wong Yuk Man CEG.
Department of Computer Engineering University of California at Santa Cruz Video Compression Hai Tao.
Computing motion between images
MOTION ESTIMATION An Overview BY: ABHISHEK GIROTRA Trainee Design Engineer.
Lecture06 Video Compression. Spatial Vs. Temporal Redundancy Image compression techniques exploit spatial redundancy, the phenomenon that picture contents.
A New Diamond Search Algorithm for Fast Block- Matching Motion Estimation Shan Zhu and Kai-Kuang Ma IEEE TRANSACTIONS ON IMAGE PROCESSION, VOL. 9, NO.
Image (and Video) Coding and Processing Lecture: Motion Compensation Wade Trappe Most of these slides are borrowed from Min Wu and KJR Liu of UMD.
Smart Traveller with Visual Translator for OCR and Face Recognition LYU0203 FYP.
Video Compression Concepts Nimrod Peleg Update: Dec
Face Recognition Using Neural Networks Presented By: Hadis Mohseni Leila Taghavi Atefeh Mirsafian.
EE392J Final Project, March 20, Multiple Camera Object Tracking Helmy Eltoukhy and Khaled Salama.
JPEG 2000 Image Type Image width and height: 1 to 2 32 – 1 Component depth: 1 to 32 bits Number of components: 1 to 255 Each component can have a different.
ELE 488 F06 ELE 488 Fall 2006 Image Processing and Transmission ( ) Digital Video Motion Pictures Broadcast Television Digital Video 11/28.
Video Coding. Introduction Video Coding The objective of video coding is to compress moving images. The MPEG (Moving Picture Experts Group) and H.26X.
Interframe Coding Heejune AHN Embedded Communications Laboratory Seoul National Univ. of Technology Fall 2008 Last updated
1 TEMPLATE MATCHING  The Goal: Given a set of reference patterns known as TEMPLATES, find to which one an unknown pattern matches best. That is, each.
1 Chapter 5: Compression (Part 3) Video. 2 Video compression  We need a video (pictures and sound) compression standard for: teleconferencing digital.
ELEC692 VLSI Signal Processing Architecture Lecture 7 VLSI Architecture for Block Matching Algorithm for Video compression * Part of the notes is taken.
December 4, 2014Computer Vision Lecture 22: Depth 1 Stereo Vision Comparing the similar triangles PMC l and p l LC l, we get: Similarly, for PNC r and.
December 9, 2014Computer Vision Lecture 23: Motion Analysis 1 Now we will talk about… Motion Analysis.
MOTION ESTIMATION IMPLEMENTATION IN RECONFIGURABLE PLATFORMS
Pyramidal Implementation of Lucas Kanade Feature Tracker Jia Huang Xiaoyan Liu Han Xin Yizhen Tan.
-BY KUSHAL KUNIGAL UNDER GUIDANCE OF DR. K.R.RAO. SPRING 2011, ELECTRICAL ENGINEERING DEPARTMENT, UNIVERSITY OF TEXAS AT ARLINGTON FPGA Implementation.
Guillaume Laroche, Joel Jung, Beatrice Pesquet-Popescu CSVT
IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012 Kyungmin Lim, Seongwan Kim, Jaeho Lee, Daehyun Pak and Sangyoun Lee, Member, IEEE 報告者:劉冠宇.
Segmentation of Vehicles in Traffic Video Tun-Yu Chiang Wilson Lau.
Image Processing Architecture, © Oleh TretiakPage 1Lecture 6 ECE-C453 Image Processing Architecture Lecture 6, 2/3/04 Lossy Video Coding Ideas.
Page 11/28/2016 CSE 40373/60373: Multimedia Systems Quantization  F(u, v) represents a DCT coefficient, Q(u, v) is a “quantization matrix” entry, and.
Block-based coding Multimedia Systems and Standards S2 IF Telkom University.
Motion Estimation Presented By: Dr. S. K. Singh Department of Computer Engineering, Indian Institute of Technology (B.H.U.) Varanasi
EE591f Digital Video Processing
Motion Estimation Multimedia Systems and Standards S2 IF Telkom University.
BLOCK BASED MOTION ESTIMATION. Road Map Block Based Motion Estimation Algorithms. Procedure Of 3-Step Search Algorithm. 4-Step Search Algorithm. N-Step.
1/39 Motion Adaptive Search for Fast Motion Estimation 授課老師:王立洋老師 製作學生: M 蔡鐘葳.
Hierarchical Systolic Array Design for Full-Search Block Matching Motion Estimation Noam Gur Arie,August 2005.
Principles of Video Compression Dr. S. M. N. Arosha Senanayake, Senior Member/IEEE Associate Professor in Artificial Intelligence Room No: M2.06
MOTION Model. Road Map Motion Model Non Parametric Motion Field : Algorithms 1.Optical flow field estimation. 2.Block based motion estimation. 3.Pel –recursive.
Fine-granular Motion Matching for Inter-view Motion Skip Mode in Multi-view Video Coding Haitao Yanh, Yilin Chang, Junyan Huo CSVT.
1שידור ווידיאו ואודיו ברשת האינטרנט Dr. Ofer Hadar Communication Systems Engineering Department Ben-Gurion University of the Negev URL:
Multi-Frame Motion Estimation and Mode Decision in H.264 Codec Shauli Rozen Amit Yedidia Supervised by Dr. Shlomo Greenberg Communication Systems Engineering.
Video Compression Video : Sequence of frames Each Frame : 2-D Array of Pixels Video: 3-D data – 2-D Spatial, 1-D Temporal Video has both : – Spatial Redundancy.
CMPT365 Multimedia Systems 1 Media Compression - Video Spring 2015 CMPT 365 Multimedia Systems.
Computational Controlled Mode Selection for H.264/AVC June Computational Controlled Mode Selection for H.264/AVC Ariel Kit & Amir Nusboim Supervised.
Complexity varying intra prediction in H.264 Supervisors: Dr. Ofer Hadar, Mr. Evgeny Kaminsky Students: Amit David, Yoav Galon.
Paper – Stephen Se, David Lowe, Jim Little
Compression of 3D images using disparity based coder
Common Classification Tasks
ELE 488 Fall 2006 Image Processing and Transmission ( )
Range Imaging Through Triangulation
Anisotropic Double Cross Search Algorithm using Multiresolution-Spatio-Temporal Context for Fast Lossy In-Band Motion Estimation Yu Liu and King Ngi Ngan.
Sum of Absolute Differences Hardware Accelerator
Computer Vision Lecture 16: Texture II
MPEG4 Natural Video Coding
Image and Video Processing
Instructor: Professor Yu Hen Hu
Announcements Questions on the project? New turn-in info online
Yu Liu and King Ngi Ngan Department of Electronic Engineering
HALO-FREE DESIGN FOR RETINEX BASED REAL-TIME VIDEO ENHANCEMENT SYSTEM
LSH-based Motion Estimation
Scalable light field coding using weighted binary images
Presentation transcript:

Motion Estimation for compression April, 29, 2009 שידור ווידיאו ואודיו על רשת האינטרנט Dr. Ofer Hadar Communication Systems Engineering Department Ben-Gurion University of the Negev URL: http://www.cse.bgu.ac.il/~hadar Based on: 1 Lecture of Osnat Bar Nir from Scopus 2. Motion estimation lecture: www-ict.its.tudelft.nl/html/education/courses/et10-38/hc/hc14 3. Image communication course, lec.10, by Girod 4. Block matching algorithms, from: http://atlantis.ucc.ie/dvideo/contents.html Copyright @1999, O. Hadar שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Block Matching Approaches שידור ווידיאו ואודיו ברשת האינטרנט - 2009

What Is Motion Estimation ? שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Example: Frame 1 Frame 2 שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Block Matching GOOD MATCH Macro-Block to be coded FAIR MATCH POOR MATCH שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Residual Error Picture Desired Picture Reference Picture Predicted Picture The residual Error Picture contains the differences between the desired picture and the predicted one. This is the picture to be coded and transmitted. Residual Error Picture שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Why Motion Estimation ? The basic principle of motion estimation is that in most cases, consecutive video frames will be similar except for changes induced by objects moving within the frames. For each block in current frame find a matching block from consecutive frame, so that only the (relatively small) Residual Error Picture and its corresponding Motion Vectors are encoded. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

How Motion is estimated ? שידור ווידיאו ואודיו ברשת האינטרנט - 2009 The problem for motion estimation to solve is how to effectively represent the changes between two video frames. Motion estimation applies a comprehensive two- dimensional spatial search in order to find the best match for each block. MPEG does not define how this search should be performed. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Block Matching - 1 Block Matching Assumes the 2D translation motion model. Subdivide the frame (image information) into square (NXN) blocks. Image sequence model. S t-1 Observe notation! time t שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Criterions for Block Matching - 1 For each NXN block S, a single motion vector (dh,dv) is found by minimizing an error measure- finding the best “match” which minimizes the error measure. Mean Square Error (MSE) match criterion- Mean Absolute Difference (MAD): Full search block matcher calculates M(d) for all d within an MXM search area. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Criterions for Block Matching - 2 Pixel Difference Classification (PDC): Compares each pixel of the target block with its counterpart in the candidate block and classifies each pixel pair as either matching or not. “Match” if the difference is less than some threshold (th). The grater the number of matching pixels, the better the match is. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Criterions for Block Matching - 3 Integral projection Sums the values of pixels from each column and each row of the block. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Full Search All blocks in the search window (part of reference frame) are compared against current block (in currently coded frame), in order to select the most representative one. The pointer to the selected block is called Motion Vector. currently coded frame reference frame Usually requires long processing time, therefore not applicable in real-time applications שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Full search block matching - 1 Full search/brute force/exhaustive block matching dv M dv,max M N dh dh,max N x(m,t) All possible displacements within the search range are compared => Computationally complex. Noise sensitive. Estimated vector field is not very smooth. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Sub-Optimal Motion Estimation Motion estimation is very expensive computationally DSP computation power is limited… Full search is not applicable שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Sub Optimal Motion Estimation For a search window of ±32 pixels, full search will take more than 4000 points per MB. DSP enables a budget of about 250 points per MB. A way must be found to estimate motion in much more efficient way: A Sub-optimal Motion Estimation is needed שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Sub-Optimal Motion Estimation Main approaches to reduce computation of motion estimation: Sub-sampling of the motion displacement space Pel sub-sampling: A sub-sample of the MB is compared with sub-sampled blocks in search window. Adaptive search area Predictive Motion Estimation Hierarchical & multi-resolution motion estimation שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Sub-sampling of the motion displacement space Compare a sub-set of blocks against current MB Algorithms based on a coarse-to-fine approach: Step size of search is reduced by ½ with every search step. Many algorithms, using various searching orders. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Sub-sampling of the motion displacement space example: 3-Step Search: שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Reduced complexity block matching - 1 To reduce the complexity of full search block matching, various restricted search patterns have been proposed. “One at a time search”: Horizontal stage: the point of minimum distortion on the horizontal axis is found. Vertical stage: Starting with this point, the minimum distortion in the vertical direction is found. dv dh שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Reduced complexity block matching - 2 N-step search or cross-search A number of positions around a center are tested. The position of minimum distortion becomes the center of the next stage. Principle of locality: First, examine a number of sparsely spaced candidate blocks, from the search area, and choose the best match from these to be the center of a finer (denser) search. Special case: Quadrant Monotonic: candidate blocks close to the optimal block have better matches and the value of distortion is a function of the distance from the optimal position. dv dh שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Reduced complexity block matching - 3 2D logarithmic search Iterative comparison of error measure values at 5 neighboring points Logarithmic refinement of the search pattern if: The best match is in the center of the 5-point pattern. The center of the search pattern touches the border of the search range. Computational complexity: Example: max. horizontal, vertical displacement = 6 integer-pix accuracy. (a- for special vector, b- worst case). שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 2-D Logarithmic Search We will discuss two approaches here: This approach was published in a paper by Jain and Jain. Iterative comparison of the error measure (MAE) at five neighboring points Logarithmic refinement (divide by 2) of the search pattern if Best match is in the center of the 5-point pattern (right figure) OR, center of search pattern touches the border of the search range (left figure). Search edge 4 4 3 5 3 5 2 2 1 1 1 1 1 1 שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Reduced complexity block matching - 5 Orthogonal search algorithm (OSA): Hybrid of the 2D logarithmic search and the 3 step search: First stage- horizontal: Compute distortion in 3 points (0,0), (s,0), (-s,0), where s is the step size. Position of minimum distortion becomes the center of the vertical stage. Second stage- vertical: Two point- above and below the new center are examined, and the value of the distortion function at these 3 positions are compared. The position with the minimum distortion becomes the center of the next stage. After one horizontal and vertical iteration, the step size s is halved, if it is greater than 1, and the algorithm proceeds from step one. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Reduced complexity block matching - 6 Orthogonal search algorithm (OSA), cont. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Pel Subsampling 16x16 Pixel Array 2:1 Subsampling 4:1 Subsampling Reduces the number of pels taken into account for the distance calculation at every search position. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Adaptive search area Example Spiral Search: Performs a Spiral Search for the matching block. Search window size is data dependent, and set in run-time שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Predictive Motion Estimation Often there is a high correlation between motion of neighboring blocks. Motion vectors can be predicted a priori, in order to gain an initial guess of the next motion vector. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Hierarchical & multi-resolution motion estimation Find motion vector in a coarse resolution, and refine the predicted motion vector to obtain the motion vector in a finer resolution. Usually uses 3 resolution levels. Requires extra computation for multi-resolution representations of the pictures. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Hierarchal Block Matching - 1 Start with estimation on low resolution frames. Propagate (intermediate) vectors to higher resolution levels. Allow only refinement of propagated motion vectors Limited complexity even for large search areas. Implicit smoothing of motion field. Resolution level 1 Resolution level 2 Resolution level 3 שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Hierarchal Block Matching - 2 2.a. propagate motion field 1. Block matcher (e.g. N-step) on small blocks 2.b. refine motion field 3.b. refine motion field Frame t-1 Frame t שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Hierarchal Block Matching - 3 Found motion vector Search area Resolution level 1 Search area (only refinement allowed) propagate Resolution level 2 Smoothness is obtained because the same propagated vector is used for multiple blocks at higher levels. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

Block matching for other models For other than traditional models, block matching is still possible, but becomes very computationally expensive. Example: Rotation Ф=0 Ф=0.15 Ф=0.30 Ф=0.70 For a very large number of rotations, the match criterion has to be calculated. שידור ווידיאו ואודיו ברשת האינטרנט - 2009

שידור ווידיאו ואודיו ברשת האינטרנט - 2009 Summary After reviewing the above sub-optimal motion estimation method, we found out that the best results were achieved while using an algorithm which combines sub-sampling of the motion displacement space with adaptive search area and predictive motion vectors. Results were close enough to the results obtained by full search. שידור ווידיאו ואודיו ברשת האינטרנט - 2009