Indirect dark matter search with the balloon-borne PEBS detector

Slides:



Advertisements
Similar presentations
Measurement of Relic Density at the LHC1 Bhaskar Dutta Texas A&M University Bhaskar Dutta Texas A&M University Measurement of Relic Density at the LHC.
Advertisements

ELENA VANNUCCINI ON BEHALF OF PAMELA COLLABORATION Measurement of the Hydrogen and Helium absolute fluxes with the PAMELA experiment.
The Results of Alpha Magnetic Spectrometer (AMS01) Experiment in Space Behcet Alpat I.N.F.N. Perugia TAUP 2001 Laboratori Nazionali del Gran Sasso, Italy.
AMS Discoveries Affecting Cosmic-Ray SIG Priorities Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland AAS HEAD.
Dark Matter Explanation For e^\pm Excesses In Cosmic Ray Xiao-Gang He CHEP, PKU and Physics, NTU.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Performance of AMS-02 on the International Space Station DESY Theory Workshop, Hamburg Melanie Heil Supported by the Carl-Zeiss Foundation.
CAN WE UNDERSTAND THE PAMELA POSITRON EXCESS AS WINOS? Gordy Kane January 2009 Ann Arbor arXiv , see also Phill Grajek, Aaron Pierce,
The Alpha Magnetic Spectrometer on the International Space Station Mercedes Paniccia, University of Geneva (Switzerland), November 2003 An experiment to.
Dark Matter at the LHC Bhaskar Dutta Texas A&M University
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
June 8, 2007DSU 2007, Minnesota Relic Density at the LHC B. Dutta In Collaboration With: R. Arnowitt, A. Gurrola, T. Kamon, A. Krislock, D. Toback Phys.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
IDM 2002, September 4, 2002Joakim Edsjö, Paolo Gondolo, Joakim Edsjö, Lars Bergström, Piero Ullio and Edward A. Baltz.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
22. April 2004, New Phenomena MeetingChristian Autermann - Resonant Slepton Production1 Overview R-parity violating Supersymmetry Cross section and Run.
2009/11/12KEK Theory Center Cosmophysics Group Workshop High energy resolution GeV gamma-ray detector Neutralino annihilation GeV S.Osone.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,
Andrei Kounine / MIT on behalf of AMS-02 collaboration ICHEP 2004, Beijing Astroparticle physics with AMS-02.
Direct and Indirect Dark Matter Detection in Models with a Well-Tempered Neutralino Eun-Kyung Park Florida State University in collaboration with H. Baer.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Gamma rays annihilated from substructures of the Milky Way and Quintessino dark matter Bi Xiao-Jun Institute of High Energy Physics, Chinese Academy of.
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
1 PEBS Prototype PERDaix was launched in October 2010 from Kiruna, Sweden.
Indirect Dark Matter Search with AMS-02 Stefano Di Falco INFN & Universita’ di Pisa for the AMS collaboration.
COSMIC RAY PHYSICS WITH AMS Joseph Burger MIT On behalf of the AMS-02 collaboration EPS2003 Aachen Particle Astrophysics July 17, 2003
IDM 2000, September, 2000 Joakim Edsjö, Paolo Gondolo, Joakim Edsjö, Lars Bergström, Piero Ullio and Edward A. Baltz.
The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) Maria Ionica I.N.F.N. Perugia International School.
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
V. Bertin - CPPM - MANTS Paris - Sept'10 Indirect search of Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
CONSTRAINED MSSM AND RECENT ASTROPHYSICAL DATA Alexey Gladyshev (JINR, Dubna & ITEP, Moscow) SEMINAR AT KEK THEORY GROUP November 1, 2004.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
Search for Dark Matter The AMS-02 Experiment Ignacio Sevilla Noarbe (CIEMAT, Madrid) on behalf of the AMS collaboration.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
DARK MATTER Fisica delle Astroparticelle Piergiorgio Picozza a.a
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
PEBS: Positron Electron Balloon Spectrometer Henning Gast I. Physikalisches Institut B RWTH Aachen DPG07 – 6 March 2007.
1 A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments.
PEBS: Positron Electron Balloon Spectrometer Henning Gast I. Physikalisches Institut B RWTH Aachen 30 th International Cosmic Ray Conference – Merida,
PEBS: Positron Electron Balloon Spectrometer Henning Gast
Topics on Dark Matter Annihilation
Imaging Dark Matter with the Pamela Experiment
Dark Matter in Galactic Gamma Rays
CALET-CALによる ガンマ線観測初期解析
Can dark matter annihilation account for the cosmic e+- excesses?
Cosmic-Rays Astrophysics with AMS-02
Generating Neutrino Mass & Electroweak Scale Radiatively
Focus-Point studies at LHC
Dark Sectors for and anomalies
XX ECRS ,Lisbon, 5th September, 2006
AMS : A COSMIC RAY OBSERVATORY ON THE INTERNATIONAL SPACE STATION Carlo Bosio INFN - Roma ‘La Sapienza’ University Susy June 2004.
Balloon observation of electrons and gamma rays with CALET prototype
Evidence for WIMP Dark Matter
Search for Dark Matter physics 805 fall 2008.
Analysis of enhanced effects in MSSM from the GUT scale
Detecting dark matter through line emission
SUSY SEARCHES WITH ATLAS
Relic density : dependence on MSSM parameters
Inclusive Measurements as an mSUGRA Signal with ATLAS
Presentation transcript:

Indirect dark matter search with the balloon-borne PEBS detector Henning Gast I. Physikalisches Institut B RWTH Aachen DPG08 – Freiburg – 7.3.2008

Introduction Goal: Measure the cosmic-ray positron fraction with a balloon-borne spectrometer. Motivation: Indirect search for dark matter. Popular scenario: WIMP annihilation in Galactic halo. Requirements: - Large geometrical acceptance: >1000 cm2sr for 20-day campaign - Excellent proton suppression of O(106) - Good charge separation - Payload weight < 2t - Power consumption < 1000W e.g. at 40 GeV: 10-4GeV-1m-2sr-1s-1 x (100x24x3600)s x 0.4 m2sr = 344 e+/GeV Henning Gast • DPG 08 - 7.3.2008 • p 2/13

Prospective performance of PEBS detector acceptance @100GeV and mission duration PEBS 4000 cm2sr 100 days AMS02 800 cm2sr 1000 days PAMELA 20 cm2sr PEBS schedule 2010 20 days 2011 40 days 2012 40 days 100 days PEBS= 1.4 years AMS02 55 years PAMELA 40 days Henning Gast • DPG 08 - 7.3.2008 • p 3/13

PEBS design overview Tracker: Time-of-Flight system (TOF): Scintillating fibres (d=250 m) with Silicon Photo-Multiplier (SiPM) readout; power: 260W Time-of-Flight system (TOF): 2 x 2 x 5 mm scintillator, SiPM readout; trigger system! 2.2 m Solar panels: power for subdetectors, communications, data handling ~600 W Magnet: Pair of superconducting Helmholtz coils, Helium cryostat, mean B = 0.8T, weight: 850kg

PEBS design overview Transition Radiation Detector (TRD): 2 x 8 x ( 2cm fleece radiator + 6mm straw tube Xe/CO2 80:20 ) Positron acceptance: 4000 cm2sr 2.2 m Electromagnetic calorimeter: 70 x ( 0.5mm W + 6x0.5 mm2 scintillating fibre + SiPM ) = 10 X0, weight: 600kg

mSUGRA scan Supersymmetry provides most popular DM candidate: the neutralino χ Goal: Assess constraints on mSUGRA parameter space from currently available data and improvements expected from PEBS. mSUGRA parameters: m0 soft SUSY breaking scalar mass parameter at GUT scale m1/2 soft SUSY breaking fermionic mass parameter at GUT scale tan  ratio of Higgs vacuum expectation values A0 trilinear scalar coupling at GUT scale (set to zero) sgn  sign of Higgs mass parameter (set to +1 (muon magn. moment)) + mtop top quark mass roughly 3.8 million models scanned Tools: ISAJET 7.75: solution of RGEs DarkSUSY 4.1: signal fluxes, cosmological and other observables MicroMEGAS 2.0: additional observables, cross-check GALPROP 50p: model of cosmic-ray propagation and secondary production hep-ph/0203114 all linked into one executable (only one call of ISAJET), considerable effort because of Fortran limitations } Henning Gast • DPG 08 - 7.3.2008 • p 6/13

Relic density constraint for different mtop Ωχh2 with coannihilations tan b = 20 tan b = 50 Region allowed by relic density constraint (CMB+large scale structure) depends strongly on tan β and mtop. Tevatron: mtop=170.9 ± 1.86 GeV PDG: Ωnbmh2 = 0.106 ± 0.008 Henning Gast • DPG 08 - 7.3.2008 • p 7/13

Positron fraction and boost factors comparison of current data to projected PEBS data for m0=1300 GeV, m1/2=270 GeV, tan b = 40, mtop = 170.9 GeV χ2 minimization of SUSY+background curve with respect to data: 1 free parameter: “boost factor” of SUSY signal → clumpiness of dark matter halo secondary component current data projected PEBS Henning Gast • DPG 08 - 7.3.2008 • p 8/13

Antiprotons and diffuse gamma-rays SUSY+background for γ-ray boost factor π0+IC+bremss.+synchrotron SUSY signal secondary component DM explanation of EGRET data from inner Galaxy: large boost factor required → overproduction of antiprotons SUSY signal no need for signal component apparent in antiprotons Henning Gast • DPG 08 - 7.3.2008 • p 9/13

Preferred region from current knowledge Ingredients: CR positron fraction CR antiprotons CR gamma-rays top quark mass relic density of dark matter anomalous magnetic moment of the muon b→sγ branching ratio using 3 different boost factors Henning Gast • DPG 08 - 7.3.2008 • p 10/13

Positron fraction c2 projected PEBS data current data vastly improved statistics and extended energy range current data tan b = 40, mtop = 170.9 GeV Henning Gast • DPG 08 - 7.3.2008 • p 11/13

Projected constraints on mSUGRA parameter space no additional constraint including relic density constraint current data within 90% CL around χ2tot minimum projected PEBS data: positron fraction only corresponding resolution in neutralino mass PEBS projected positron fraction data only: points (from entire scan) within 90% CL interval around χ2 minimum. Henning Gast • DPG 08 - 7.3.2008 • p 12/13

Conclusion Design study to build a balloon- borne spectrometer to measure the cosmic-ray positron fraction, in the context of indirect search for dark matter Extensive scan of mSUGRA parameter space: present data show preference for m1/2<~600 GeV Corresponding neutralino masses are favourable for upcoming positron experiments PEBS data will greatly enhance our knowledge about dark matter, as well as about cosmic-ray propagation Anomaly in the positron spectrum? PEBS can answer the question! Henning Gast • DPG 08 - 7.3.2008 • p 13/13

Impact of LCDM N-body simulations Recent results for structure and distribution of dark matter clumps: boost factors close to unity total χ2 as before, but without antiproton and gamma-ray terms, only points with BF<20 In the preferred region: Subdominant neutralino dark matter with Ωχh2~0.015 and mχ ~ 100 GeV Henning Gast • DPG 08 - 7.3.2008 • p 14/13

B/C-ratio B/C ratio: important test for propagation models, good description by both Galprop models (conventional vs plain diffusion) Henning Gast • DPG 08 - 7.3.2008 • p 15/13