The CHIANTI Atomic Database Applications for astrophysics

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
The synthetic emission spectra for the electron non-thermal distributions by using CHIANTI Elena Dzifčáková Department of Astronomy, Physics of the Earth.
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Estimating the Chromospheric Absorption of Transition Region Moss Emission Bart De Pontieu, Viggo H. Hansteen, Scott W. McIntosh, Spiros Patsourakos.
Hinode / EIS Solar 24, Dec 2008 Dr Peter Young, NRL/GMU Active Region Diagnostics with EIS Dr Peter Young Dr Peter Young Naval Research Laboratory George.
The CHIANTI database Adding Ionization and Recombination to CHIANTI Dr Peter Young CCLRC/Rutherford Appleton Laboratory, UK Dr Ken Dere George Mason University,
Recombination line spectroscopy - theory and applications Robert Bastin and Peter Storey UCL Mike Barlow (UCL) and Xiaowei Liu (Peking University) with.
R-matrix calculations along iso-electronic sequences
Astrophysical Priorities for Accurate X-ray Spectroscopic Diagnostics Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics In Collaboration.
Recent advances in the CHIANTI database in the X-ray range Enrico Landi Naval Research Laboratory.
Ionization and Recombination with Electrons: Laboratory Measurements and Observational Consequences Daniel Wolf Savin Columbia Astrophysics Laboratory.
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
Ionization, Resonance excitation, fluorescence, and lasers The ground state of an atom is the state where all electrons are in the lowest available energy.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps [session no. C9] HMI/AIA science teams meeting; Monterey; Feb
The CHIANTI database Assessing Atomic Models for Forbidden Transitions Dr Peter Young CCLRC/Rutherford Appleton Laboratory, UK and the CHIANTI team The.
Photoionization Modeling: the K Lines and Edges of Iron P. Palmeri (UMH-Belgium) T. Kallman (GSFC/NASA-USA) C. Mendoza & M. Bautista (IVIC-Venezuela) J.
Recent advances in the CHIANTI project Enrico Landi Naval Research Laboratory.
Physics 681: Solar Physics and Instrumentation – Lecture 25 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
NEI Modeling What do we have? What do we need? AtomDB workshop Hiroya Yamaguchi (CfA) Fe ion population in CIE (AtomDB v.2.0.2) Temperature.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Modeling the Solar EUV irradiance
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
Age dependence of EM in AR Cores... and... Some thoughts on the Accuracy of Atomic Data Helen Mason, Durgesh Tripathi, Brendan O’Dwyer and Giulio Del Zanna.
SOHO/CDS CDS Users’ Meeting, Sep 2005 Dr Peter Young, CCLRC/RAL Element Abundance Results from CDS Dr Peter Young Dr Peter Young SOHO/CDS Project Scientist.
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Peter Young* George Mason University, VA Uri Feldman Artep Inc, MD *Work funded by NSF and NASA.
Atomic Data: its role in interpreting data Dr Peter Young STFC Introductory Course on Solar-Terrestrial Physics Armagh, Sept. 2007
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Time evolution of the chromospheric heating and evaporation process Case study of an M1.1 flare on 2014 September 6 Peter Young 1,2, Hui Tian 3, Katharine.
New advances in photoionization codes, how and what for? New advances in photoionization codes: Barbara Ercolano, UCL How and What for?
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
Atomic Physics for X-ray Astronomy: A Primer
EUV & X-ray Updates to FORWARD since our last meeting Terry Kucera NASA/GSFC March 10, 2014.
Photoionization Tim Kallman NASA/GSFC What is photoionization? Removal of a bound electron by a photon Loosely refers to any situation where external photons.
Lecture 3: Atomic Processes in Plasmas Recall:  Individual atomic properties (intrinsic)  Plasma processes (extrinsic) Electron-Ion processes: spectral.
POST CME EVENTS: COOL JETS AND CURRENT SHEET EVOLUTION A. Bemporad, G. Poletto, S. T. Suess IAU Symposium 226 Coronal and Stellar Mass Ejections September.
Emission I: Atomic Physics for X-ray Astronomy Randall K. Smith Johns Hopkins University NASA/GSFC.
ADAS workshop, Auburn University1 Generalised collisional-radiative modelling for Silicon and beyond Alessandra Giunta.
Operated by the Los Alamos National Security, LLC for the DOE/NNSA IAEA CODE CENTRE NETWORK SEPT 2010 Recent Developments with the Los Alamos Atomic Physics.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTADA VO Tools and Atomic Data for Astrophysics Giulio.
The CHIANTI Atomic Database An Overview of Data, Software and Applications Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center,
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
The Abundances of Light Neutron- Capture Elements in Planetary Nebulae Nick Sterling NASA Goddard Space Flight Center June 19, 2007 Collaborators: Harriet.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
Spectrogram 2-40 A for varying temperature. Spectra this is how we find out what everything is made of Vinay Kashyap Smithsonian Astrophysical Observatory.
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTada VO Tools and Atomic Data for Astrophysics Giulio.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Electron-impact excitation of Be-like Mg
Linking in-situ measurements with SPICE
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
Chapter 13 – Behavior of Spectral Lines
Nonthermal distributions in the solar and stellar coronae
Details of Equation-of-State and Opacity Models
Lecture 3 Radiative Transfer
ADAS workshop, Auburn University
Activities on A-M Data G. Mazzitelli ENEA
Dielectronic Recombination and Inner-Shell Photoabsorption
Studying Transition Region Phenomena with Solar-B/EIS
Chromospheric and Transition Region Dynamics
VOTADA VO Tools and Atomic Data for Astrophysics
Presentation transcript:

The CHIANTI Atomic Database Applications for astrophysics Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center, USA

Overview Quick guide History of project Impact Funding for CHIANTI Database contents Data for level balance Data for ion balance Software Data assessment Applications Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Quick guide CHIANTI (data and software) is freely available over the web Website: http://chiantidatabase.org Contains data for neutrals and ions Current version: 8.0 (September 2015) Description: Young et al. (2016, J.Phys.B, 49, 074009) Detailed user guide: http://chiantidatabase.org/cug.pdf Keywords: astrophysics − the Sun − optically-thin − emission lines Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

NASA SDO/AIA 193 Å

SOHO Workshop, 1993, Elba, Italy

Who are the CHIANTI team? (L-to-R) Giulio Del Zanna, Peter Young, Ken Dere, Massimo Landi (retired), Enrico Landi & Helen Mason Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

3. Impact Each version of CHIANTI is described in a paper These papers have received 2879 citations CHIANTI 1: Dere et al. (1997, A&A) CHIANTI 8: Del Zanna et al. (2015, A&A) Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

4. CHIANTI funding US funding currently from NASA Astrophysics ADAP grant, 2015-2018 Title: ‘Major updates to the CHIANTI atomic database for the astronomy community’ Funds myself, Ken Dere & Enrico Landi Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

5. What is CHIANTI? Sets of atomic data for modeling the level balance equations for modeling the ion balance equations for modeling continuum emission all data stored as plain ASCII files A software package both IDL and Python versions For modeling CHIANTI separates level balance (within ion) from ion balance Continuum emission not covered in this talk Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

5a. Level balance equations For low-density astrophysical plasmas, dominant processes are electron excitation/de-excitation spontaneous radiative decay Atomic quantities needed for modeling observed energy levels electron rate coefficients, Cij radiative decay rates, Aij A Maxwellian electron distribution is assumed Suffix Contents .elvlc Energy levels .wgfa Radiative decay rates .scups Electron collision strengths Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Database coverage These are all fine structure levels Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Sources of electron excitation data Most recent data are from the UK APAP network (http://apap-network.org) Systematic calculations along isoelectronic sequences (He, Li, Be, B, F, Ne, Na, Mg) Bespoke calculations for coronal iron ions (Fe VIII-XIV) See Badnell et al. (2016, J.Phys.B, 49, 094001) Nigel Badnell Pete Storey Helen Mason Giulio Del Zanna Alessandra Giunta Luis Fernández Menchero Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Additional level processes Proton excitation/de-excitation mainly for ground configuration Level-resolved ionization/recombination Dielectronic capture Autoionization rates stored in WGFA file Two-photon decays (H and He-like only) Photoexcitation & stimulated emission assume radiation field (e.g., black body) Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Level-resolved ionization/recombination Dielectronic captures to auto-ionizing states contained in separate dielectronic models (e.g., ‘o_6d’) treated as electron excitations, so added to SCUPS file Ionization and recombination to bound states treated as perturbing processes to level populations added as post-facto corrections to populations for key ions approximation works when population mostly in ground level data stored in .RECLVL and .CILVL files These processes important for X-ray spectral modeling. Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

5b. Ionization balance For modeling the distribution of ion states in an electron-ionized plasma Need ion-to-ion total recombination and ionization rates In 2009 (CHIANTI 6) we started including these rates Processes direct ionization excitation-autoionization radiative recombination dielectronic recombination CHIANTI files DIPARAMS, EASPLUPS (ionization) RRPARAMS, DRPARAMS (recombination) Mainly from Dere (2007, A&A, 466, 771) Mainly from N.R. Badnell & collaborators The CHIANTI ion balance file is chianti.ioneq Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

6. Software Software package written in the Interactive Data Language (IDL) available as tar file from webpage Since 2010, a Python package (ChiantiPy) is available http://chiantipy.sourceforge.net also available at GitHub Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Contribution functions IDL software Read files Descale upsilons Level populations [pop_solver] Emissivities [emiss_calc] Contribution functions [ch_synthetic] Continuum emission [freefree] [freebound] [twophoton] Diagnostic ratios [dens_plotter] [temp_plotter] Synthetic spectra [make_chianti_spec] Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

7. Data assessment Assessment of the atomic data is a crucial part of CHIANTI 1. Each transition is assessed graphically Burgess & Tully (1992) scaling used 2. Benchmark comparisons with solar and stellar spectra performed intensities/fluxes predicted and compared with observations gives confidence in data identifies where new data are required Scaled temperature Scaled upsilon Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

8. Applications: users of CHIANTI Instrument teams RHESSI SDO/AIA Hinode/EIS Hinode/XRT SOHO/CDS SOHO/SUMER SOHO/EIT SOHO/UVCS TRACE Yohkoh/SXT Solar modeling HYDRAD (Bradshaw) CORHEL (PSI) Bifrost (Oslo) RADYN (Allred) NRLEUV (Warren) FISM (Chamberlin) DIPER (HAO) CHABLIS (Laming) Astrophysics modeling CLOUDY (Ferland) XSTAR (Kallman) ATOMDB (CfA) MOCASSIN (Ercolano) TPCI (Io torus) SHAPEMOL (Nebulae) TARDIS (Supernovae) NERO (Supernovae) PINTofALE (CfA) STOUT (Kentucky) Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Applications: NASA instrumentation CHIANTI used for deriving response functions performing calibration Hinode/EIS calibration (Warren et al. 2014) SDO/AIA response functions (Boerner et al. 2014) Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Applications: comet emission Comet Lovejoy passed through the Sun’s corona Bryans & Pesnell (2012, ApJ) used CHIANTI to demonstrate that AIA comet emission mostly from oxygen NASA SDO/AIA 171Å Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Applications: Cygnus Loop Supernova remnant Sankrit et al. (2014, ApJ) presented Spitzer observations CHIANTI used to model spectrum NASA GALEX Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016

Summary CHIANTI is a freely available atomic data and software package Widely used in astrophysics analysis of spectra predicting radiative emissions from theoretical models instrument calibration Benchmarking and assessment critical to success of project CHIANTI Google group This is used to communicate with our users Send me an e-mail if you’d like to join peter.r.young@nasa.gov http://chiantidatabase.org Peter Young (GMU/GSFC) SEAL seminar, 19 May 2016