Intersection of Solids

Slides:



Advertisements
Similar presentations
DEVELOPMENT OF SURFACES OF SOLIDS.
Advertisements

SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
INTERPENETRATION OF SOLIDS
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
Development of Surfaces.
H H D D D ISOMETRIC DRAWING TYPICAL CONDITION. L L H
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
SOLIDS To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups. Group A Solids having.
Problem: A vertical cone, base diameter 75 mm and axis 100 mm long,
Development of Surfaces
MINOR II 1 Date: Friday, 25/03/2011. Time: 11 am to 1 pm (including first 30 min. for quiz). Syllabus: All topics covered from lab 4 to lab 8 (including.
INTERPENETRATION OF SOLIDS WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT AND AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS.
DEVELOPMENT OF SURFACES Part II
Section Plane Through Apex Section Plane Through Generators Section Plane Parallel to end generator. Section Plane Parallel to Axis. Triangle Ellipse Parabola.
1.SECTIONS OF SOLIDS. 2.DEVELOPMENT. 3.INTERSECTIONS. ENGINEERING APPLICATIONS OF THE PRINCIPLES OF PROJECTIONS OF SOLIDES. STUDY CAREFULLY THE ILLUSTRATIONS.
Projection of Solid Prepared by Thaker Vivek Solanki Hardik Patel Nirmal Tilala Siddharth Guided By Prof. Dipak Solanki Mechanical Engg. Dept. Darshan.
Isometric Projection Prepared by Guided By
SOLIDS To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups. Group A Solids having.
Projection of Planes Plane figures or surfaces have only two dimensions, viz. length & breadth. They do not have thickness. A plane figure, extended if.
PROJECTIONS OF SOLIDS & SECTIONS OF SOLIDS
SECTIONS OF SOLIDS Part I Prof.T.JEYAPOOVAN Department of Mechanical Engineering Hindustan Institute of Technology and Science Chennai , India
SOLIDS To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups. Group A Solids having.
SECTIONS OF SOLIDS. ENGINEERING APPLICATIONS OF THE PRINCIPLES OF PROJECTIONS OF SOLIDS.
7.1 Three- Dimensional Figures I can classify and draw three-dimensional figures.
Projection of Solid Guided By Prepared by Prof. Utsav Kamadiya
Isometric Projection of Solid By Alok kumar testing CIPET - Hajipur
Learning Outcomes 1. Develop and interpret the projection of regular solids like Cone, Pyramid, Prism and Cylinder.
PRESENTATION ON INTERSECTION OF SOLIDS by Mr.Venkata Narayana Mr.A.S.Pavan Kumar Department of Mechanical Engineering SNIST.
DEVELOPMENT OF SURFACES Part I Prof.T.JEYAPOOVAN Department of Mechanical Engineering Hindustan Institute of Technology and Science Chennai , India.
7.1 Three- Dimensional Figures I can classify and draw three-dimensional figures.
Introduction to 3D Solids and Solids of Revolution Some 3D shapes can be formed by revolving a 2D shape around a line (called the axis of revolution).
(1) Prism: It is a polyhedra having two equal and similar faces called its ends or bases, parallel to each other and joined by other faces which are rectangles.
Sections of Solids ME 111 Engineering Drawing. Sectional Views The internal hidden details of the object are shown in orthographic views by dashed lines.
Isometric Projections
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
Development of surfaces
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
STANDING ON H.P On it’s base. RESTING ON H.P On one point of base circle. LYING ON H.P On one generator. (Axis perpendicular.
What is usually asked in the problem?
CURVES IN ENGINEERING.
Development of lateral Surfaces
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
Visit for more Learning Resources
An object ( here a solid ) is cut by some imaginary cutting plane
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
Auxiliary Views & Development
An object ( here a solid ) is cut by some imaginary cutting plane
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
Problem 2: A cone, 50 mm base diameter and 70 mm axis is
UNIT – III Syllabus (a) Projection of planes: Introduction, types of planes, projection of planes, projection of planes perpendicular to both the reference.
What will be given in the problem?
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
UNIT – IV (a) Development of surfaces: Introduction, methods of development, development of lateral surfaces of right solids, cube, prisms, cylinders,
SECTIONS OF SOLIDS Chapter 15
What will be given in the problem?
C.R.ENGINEERING COLLEGE
INTERPENETRATION OF SOLIDS
ORTHOGRAPHIC PROJECTIONS
What will be given in the problem?
What will be given in the problem?
SECTIONS OF SOLIDS Part I
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
ORTHOGRAPHIC PROJECTIONS
SOLIDS Group A Group B Cylinder Cone Prisms Pyramids
Projections of Solids Mohammed Umair Hamid
Development of surfaces
SECTIONS OF SOLIDS. DEVELOPMENT. INTERSECTIONS.
What will be given in the problem?
H H D D D ISOMETRIC DRAWING TYPICAL CONDITION. L L H
Presentation transcript:

Intersection of Solids ME 111 Engineering Drawing 2016

INTERPENETRATION OF SOLIDS WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT AND AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED, WHICH REMAINS COMMON TO BOTH SOLIDS. THIS CURVE IS CALLED CURVE OF INTERSECTION IT IS A RESULT OF INTERPENETRATION OF SOLIDS. PURPOSE OF DRAWING THESE CURVES:- WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH BECOMES A BASIC REQUIREMENT FOR STRONGEST & LEAK-PROOF JOINT. Curves of Intersections being common to both Intersecting solids, show exact & maximum surface contact of both solids. Study Following Illustrations Carefully. Square Pipes. Circular Pipes. Minimum Surface Contact. ( Point Contact) (Maximum Surface Contact) Lines of Intersections. Curves of Intersections.

Introduction Solids in real world in general Combination of two or more solids Definite curve can be seen at intersection of solids Curve of intersection (COI) COI is common to the intersecting solids

Cases of Intersection The cases of intersection depend on Type of intersecting solids, and Manner in which they intersect. When two solids bounded by plane surfaces such as prism and pyramid penetrate each other, we obtain straight lines as their line of intersection.

Cases of Intersection Line of intersection between a plane surface and a curved surface of two solids such as prism and cylinder is a curve. The line of intersection between two curved surfaces of solids such as cylinder and cone is a curve. Manner in which solids intersect: (i) Axis perpendicular and intersecting (ii) Axis perpendicular and offset (iii) Axis inclined and intersecting (iv) Axis inclined and offset (v) Axis parallel and coinciding (vi) Axis parallel and offset

SOME ACTUAL OBJECTS ARE SHOWN, SHOWING CURVES OF INTERSECTIONS. BY WHITE ARROWS. A machine component having two intersecting cylindrical surfaces with the axis at acute angle to each other. An Industrial Dust collector. Intersection of two cylinders. Intersection of a Cylindrical main and Branch Pipe. Pump lid having shape of a hexagonal Prism and Hemi-sphere intersecting each other. A Feeding Hopper In industry. Forged End of a Connecting Rod. Two Cylindrical surfaces.

FOLLOWING CASES ARE SOLVED. REFFER ILLUSTRATIONS AND NOTE THE COMMON CONSTRUCTION FOR ALL COMMON SOLUTION STEPS One solid will be standing on HP Other will penetrate horizontally. Draw three views of standing solid. Name views as per the illustrations. Beginning with side view draw three Views of penetrating solids also. On it’s S.V. mark number of points And name those(either letters or nos.) The points which are on standard generators or edges of standing solid, ( in S.V.) can be marked on respective generators in Fv and Tv. And other points from SV should be brought to Tv first and then projecting upward To Fv. Dark and dotted line’s decision should be taken by observing side view from it’s right side as shown by arrow. Accordingly those should be joined by curvature or straight lines. 1.CYLINDER TO CYLINDER2. 2.SQ.PRISM TO CYLINDER 3.CONE TO CYLINDER 4.TRIANGULAR PRISM TO CYLNDER 5.SQ.PRISM TO SQ.PRISM 6.SQ.PRISM TO SQ.PRISM ( SKEW POSITION) 7.SQARE PRISM TO CONE ( from top ) 8.CYLINDER TO CONE Note: Incase cone is penetrating solid Side view is not necessary. Similarly in case of penetration from top it is not required.

Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated CASE 1. CYLINDER STANDING & CYLINDER PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by another of 40 mm dia.and 70 mm axis horizontally Both axes intersect & bisect each other. Draw projections showing curves of intersections. 1’ 2’ 4’ 3’ 4” 1” 3” 2” a’ b ’h’ c’g’ d’f’ a” g” c” e” b” f” d” h” X Y 1 2 3 4

Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersect & bisect each other. All faces of prism are equally inclined to Hp. Draw projections showing curves of intersections. CASE 2. CYLINDER STANDING & SQ.PRISM PENETRATING 1’ 2’ 4’ 3’ 4” 1” 3” 2” a’ c’ d’ b’ a’ d’ b’ c’ a” d” b” c” X Y 1 2 3 4

CASE 3. CYLINDER STANDING & CONE PENETRATING Problem: A cylinder of 80 mm diameter and 100 mm axis is completely penetrated by a cone of 80 mm diameter and 120 mm long axis horizontally.Both axes intersect & bisect each other. Draw projections showing curve of intersections. 7’ 6’ 8’ 1’ 5’ 2’ 4’ 3’ X Y 1 2 8 3 7 4 6 5

Draw projections showing curves of intersections. CASE 4. Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm sides.and 70 mm axis, horizontally. Both axes Intersects & bisect each other. All faces of prisms are equally inclined to Vp. Draw projections showing curves of intersections. CASE 4. SQ.PRISM STANDING & SQ.PRISM PENETRATING 1’ 2’ 4’ 3’ 4” 1” 3” 2” a’ c’ d’ b’ a” d” b” c” X Y 1 2 3 4

CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING Problem: A cylinder 50mm dia.and 70mm axis is completely penetrated by a triangular prism of 45 mm sides.and 70 mm axis, horizontally. One flat face of prism is parallel to Vp and Contains axis of cylinder. Draw projections showing curves of intersections. CASE 5. CYLINDER STANDING & TRIANGULAR PRISM PENETRATING 1’ 2’ 4’ 3’ 4” 1” 3” 2” a a c d f b b c d e e f X Y 1 2 3 4

CASE 6. SQ.PRISM STANDING & SQ.PRISM PENETRATING (300 SKEW POSITION) Problem: A sq.prism 30 mm base sides.and 70mm axis is completely penetrated by another square prism of 25 mm side s.and 70 mm axis, horizontally. Both axes Intersect & bisect each other.Two faces of penetrating prism are 300 inclined to Hp. Draw projections showing curves of intersections. 1’ 2’ 4’ 3’ 4” 1” 3” 2” a’ a” e” b” d” f’ f” e’ b’ c’ c” d’ X 300 Y 1 2 3 4

CONE STANDING & SQ.PRISM PENETRATING CASE 7. CONE STANDING & SQ.PRISM PENETRATING (BOTH AXES VERTICAL) 1’ 2’ 5’ 4’ 3’ 6’ X a’ b’h’ c’g’ d’f’ e’ Y h a b c d e g f 1 2 3 4 5 6 10 9 8 7 Problem: A cone70 mm base diameter and 90 mm axis is completely penetrated by a square prism from top with it’s axis // to cone’s axis and 5 mm away from it. a vertical plane containing both axes is parallel to Vp. Take all faces of sq.prism equally inclined to Vp. Base Side of prism is 0 mm and axis is 100 mm long. Draw projections showing curves of intersections. 5 mm OFF-SET

CASE 8. CONE STANDING & CYLINDER PENETRATING Problem: A vertical cone, base diameter 75 mm and axis 100 mm long, is completely penetrated by a cylinder of 45 mm diameter. The axis of the cylinder is parallel to Hp and Vp and intersects axis of the cone at a point 28 mm above the base. Draw projections showing curves of intersection. CASE 8. CONE STANDING & CYLINDER PENETRATING o’ o” 1 2 1 2 3 4 5 6 7 8 6 7, 8, 3 4 5 X Y a’ b’h’ c’g’ d’f’ e’ g” g”h” a”e” b”d” c” h a b c d e g f