الخبو صغير المقياس أو(المدى)

Slides:



Advertisements
Similar presentations
1. Introduction.
Advertisements

Mobile Communications
Data Communication lecture10
Fading multipath radio channels Narrowband channel modelling Wideband channel modelling Wideband WSSUS channel (functions, variables & distributions)
1 Small-scale Mobile radio propagation Small-scale Mobile radio propagation l Small scale propagation implies signal quality in a short distance or time.
Copyright © 2003, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Chapter 3 Mobile Radio Propagation.
Propagation Characteristics
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
Wireless Networks (PHY): Design for Diversity Y. Richard Yang 9/18/2012.
1 Mobile Communication Systems 1 Prof. Carlo Regazzoni Prof. Fabio Lavagetto.
Mobile Radio Propagation - Small-Scale Fading and Multipath
Doppler shifts: Effect on Communication systems Kartik Natarajan.
Wireless and Mobile Communication Systems
Basics of Small Scale Fading: Towards choice of PHY Narayan Mandayam.
Wireless Communication Channels: Small-Scale Fading
Harbin Institute of Technology (Weihai) 1 Chapter 2 Channel Measurement and simulation  2.1 Introduction  Experimental and simulation techniques  The.
ECE 4730: Lecture #10 1 MRC Parameters  How do we characterize a time-varying MRC?  Statistical analyses must be used  Four Key Characteristics of a.
Wireless Communication Channels: Small-Scale Fading
EEE440 Modern Communication Systems Wireless and Mobile Communications.
Wireless communication channel
Chapter 4 Mobile Radio Propagation: Small-Scale Fading and Multipath
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
Lecture 3. 2 Outline Signal fluctuations – fading Interference model – detection of signals Link model.
ECE 480 Wireless Systems Lecture 14 Problem Session 26 Apr 2006.
Chapter 5 – Mobile Radio Propagation: Small-Scale Fading and Multipath
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 3 Jan. 22 nd, 2014.
EELE 5490, Fall, 2009 Wireless Communications Ali S. Afana Department of Electrical Engineering Class 5 Dec. 4 th, 2009.
The Wireless Channel Lecture 3.
EE 6331, Spring, 2009 Advanced Telecommunication Zhu Han Department of Electrical and Computer Engineering Class 7 Feb. 10 th, 2009.
1 What is small scale fading? Small scale fading is used to describe the rapid fluctuation of the amplitude, phases, or multipath delays of a radio signal.
Adaphed from Rappaport’s Chapter 5
Statistical Description of Multipath Fading
TI Cellular Mobile Communication Systems Lecture 3 Engr. Shahryar Saleem Assistant Professor Department of Telecom Engineering University of Engineering.
1 Orthogonal Frequency- Division Multiplexing (OFDM) Used in DSL, WLAN, DAB, WIMAX, 4G.
EE359 – Lecture 6 Outline Review of Last Lecture Signal Envelope Distributions Average Fade Duration Markov Models Wideband Multipath Channels Scattering.
ECEN 621, Prof. Xi Zhang ECEN “ Mobile Wireless Networking ” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings,
Fading in Wireless Communications Yan Fei. Contents  Concepts  Cause of Fading  Fading Types  Fading Models.
Diana B. Llacza Sosaya Digital Communications Chosun University
1 EMLAB EM wave propagation. 2 EMLAB Impulse response Time Radio Propagation : physical model 안테나에서 나온 신호는 지형지물과 반사, 투과, 산란을 거치면서 다양한 진폭과, 시간 지연을 갖는 신호들로.
EEE 441 Wireless And Mobile Communications
Small-Scale Fading Prof. Michael Tsai 2016/04/15.
Mobile Radio Propagation - Small-Scale Fading and Multipath
Dr. Clincy Professor of CS
Shadowing.
1. Introduction.
Statistical Multipath Channel Models
Doppler shifts: Effect on Communication systems
EE359 – Lecture 6 Outline Announcements: Review of Last Lecture
PROPAGATION OF RADIO WAVES
Basics of Small Scale Fading: Towards choice of PHY
Digital transmission over a fading channel
Signal Propagation Basics
CSE 5345 – Fundamentals of Wireless Networks
Advanced Wireless Networks
Advanced Wireless Networks
2: The Wireless Channel Fundamentals of Wireless Communication, Tse&Viswanath Fundamentals of Wireless Communication David Tse University of California,
Report on Channel Model
UNIT I – Wireless channels
Dr. Clincy Professor of CS
Characterizations and Modeling of the Wireless Channel
CSE 5345 – Fundamentals of Wireless Networks
Mobile Radio Environment – Propagation Phenomena
Fading multipath radio channels
Wireless Communications Principles and Practice 2nd Edition T. S
Wireless Channels Y. Richard Yang 01/12/2011.
Probability of Error with Fading
Radio Propagation Review
MITP 413: Wireless Technologies Week 3
EE359 – Lecture 6 Outline Review of Last Lecture
COS 463: Wireless Networks Lecture 14 Kyle Jamieson
Presentation transcript:

الخبو صغير المقياس أو(المدى) المحاضرة 3

خصائص القناة تغيرات إضافية بسبب: تتغير خصائص القناة باختلاف الموقع وبتغير الزمن مسارات الإشارة تتغير تتعرض أجزاء مختلفة من الإشارة لتأخير زمني مختلف مما ينتج عنه اختلاف الأطوار لهذه الأجزاء ينتج عن كل ما سبق تغيرات سريعة في قدرة الإشارة المستقبلة خبو المدى القصير. تغيرات إضافية بسبب: المسافة من المرسل العوائق البعيدة التغيرات البطيئة في متوسط القدرة التغيرات البطيئة في متوسط الخبو للإشارة المستقبلة (خبو المدى الطويل).

العوامل المؤثرة في الخبو ذو المقياس الصغير المسارات المتعددة ( تنتج خبوا ثابتا زمنيا) بسبب انتشار نسخ مختلفة من الإشارة المرسلة من الأجسام المختلفة في مسار الإشارة. الانحرافات في تردد الإشارة المستلمة (تنتج خبوا متغيراً زمنيا) وهي انحرافات في تردد الإشارة المضمنة بسبب الحركة تعرف بانحراف دوبلر وهي ناتجة عن: (إما حركة المستقبل أو المرسل أو كليهما معاً).

الانتشار عبر المسارات المتعدد يمكن أن تنتشر الإشارة بين المرسل والمستقبل عبر مسارات متعددة نتيجة الانعكاس والتشتت والحيود (reflection, scattering, diffraction). التشتت الزمني للإشارة: (Time dispersion) تتبعثر الإشارة خلال الزمن، مما يتسبب في حدوث التداخل بين الرموز المتجاورة( neighboring symbols) وهذا ما يعرف بـالتداخل البيني للرموز (inter-symbol interference ISI ). المركبات لإشارات المسارات المتعددة يمكن أن تتكون من الإشارة الواصلة بشكل مباشر من المرسل إلى المستقبل ونسخ أخرى من هذه الإشارة قد تكون مشوهة ومختلفة عن بعضها في الطور للأجزاء المختلفة نظراً لاختلاف المسافة المقطوعة.

تأثيرات الانتشار في مسارات متعددة بسبب أن المركبات المختلفة تتخذ مسارات انتشار مختلفة فهي قد تصل في أزمان مختلفة. إذا كان الزمن الدوري للرمز Ts أصغر من زمن انتشار (توسع) التأخير (أي أن Ts<Tm) فإن التداخل البيني للرموز سيحدث. عندها لا يستطيع المستقبل تحديد لأي رمز تنتمي المركبات المستقبلة عبر المسارات المعددة..

تأثيرات الانتشار في مسارات متعددة

انتشار (توسع) التأخير delay spread توسع التأخير Tm يعرف بأنه الاختلاف بين زمن وصول أول وآخر مركبة من مركبات الإشارة متعددة المسارات. والجدول التالي يبين بعض القيم النموذجية لتوسع التأخير:

Doppler Shift انحراف (إزاحة) دوبلر بافتراض أن المستقبل الجوال يتحرك من النقطة x إلى النقطة yبسرعة v :

مثال من الكتاب المنهجي صفحة 180: Ex. 5.1, (Rappaport Book) Carrier frequency = 1850 MHz 𝜆=0.162 𝑚 Vehicle moving 60 mph =26.82 m/s Compute frequency deviation in the following situations. Moving directly toward the transmitter f = fc +fd = 1850×26.82/0.162 = 1850.00016 MHz Moving perpendicular to the transmitter There is no Doppler shift +

ماذا يهم في انحراف دوبلر؟ ليست القيمة المطلقة لانحراف التردد ما يهم في انحراف (إزاحة) دوبلر، إنما ما يهم فعلاً هو الانحراف النسبي في التردد بالنسبة لعرض الحزمة الترددية للقناة. فمثلاً: إن انحرافاً في التردد بقيمة 160 هيرتز يعتبر مهماً في نظام عرض قناة الاتصال به 1 كيلوهيرتز، بينما يهمل تأثير هذا الانحراف في نظام آخر له قناة اتصال بعرض حزمة 100 ميجاهيرتز. وعمموما تعتبر النظم ذات معدل الإرسال المنخفض أكثر تأثراً بانحراف دوبلر.

انحرافات دوبلر المتعددة للإشارات الواصلة من عدة مسارات اتساعات عشوائية مختلفة، أطوار مختلفة و زوايا وصول مختلفة. إن النسخ المختلفة الواصلة من من المسارات المتعددة سيكون لها انحرافات دوبلر مختلفة حتى وإن ثبتت السرعة بسبب اختلاف زوايا الوصول.

نموذج الاستجابة لدالة الومضية للقناة متعددة المسارات نظرية المرشح الخطي y(t) = x(t) ⊗ h(t) Y ( f ) = X( f ) ⋅H ( f ) كيف تحسب استجابة النظام h(t) غير المعلومة؟ لنفرض أن x(t) = δ(t)، عندها يمكن استخدام هذه الإشارة كدخل للنظام وبالتالي سيكون الخرج هو استجابة النظام لدالة الومضة y(t) = h(t) وهو ما نبحث عنه.

كيف تحدد الاستجابة الومضية لقناة لاسلكية؟ الاستماع إلى صدى القناة ...كما في نظم الرادار ويكون ذلك عن طريق إرسال نبضة ذات عرض زمني ضيق (ليست عمليا ومضة لكنها ذات حزمة ترددية عريضة)، ومن ثم تسجل الأصداء الراجعة عند المستقبل عبر القناة خلال المسارات المتعددة.

النبضة الضيقة المرسلة من المرسل تكافئ الومضة. الاتساع والتأخير الزمني للنبضات الراجعة عبر المسارات المتعددة تتغير حسب حركة الجهاز اللاسلكي النقال. اعتماداً على الحركة Channel is time variant Time variations property Time spreading property اعتماداً على المسارات المتعددة

التعبير المكافئ للقناة في الحزمة الأساسية الاستجابة الترددية للنظام كل مسار له تأخير زمني وكسب مركب معينين. سلسلة من النبضات المتأخرة عن بعضها مفكوك متسلسلة فورير

The Fourier Transform of hb ( t,τ)=>Hb (f) Gives the spectral characteristics of the channel, i.e., frequency response Channel filter passband → “Channel BW” or Coherence BW = Bc range of frequencies over which signals will be transmitted without significant changes in signal strength channel acts as a filter depending on frequency signals with narrow frequency bands are not distorted by the channel

Multipath Channel Parameters P (τk) : relative power amplitudes of multipath signals (absolute measurements are not needed) Relative to the first detectable signal arriving at the Rx at τ0 use ensemble average of many profiles in a small localized area →typically 2 − 6 m spacing of measurements→ to obtain average small-scale response

Time Dispersion Parameters “excess delay” : all values computed relative to the time of first signal arrival τo mean excess delay → RMS delay spread → where Avg( τ2) is the same computation as above as used for except that A simple way to explain this is “the range of time within which most of the delayed signals arrive”

Typical Measured Values for RMS Delay Spread outdoor channel ~ on the order of microseconds indoor channel ~ on the order of nanoseconds

maximum excess delay ( τX): the largest time where the multipath power levels are still within X dB of the maximum power level worst case delay value depends very much on the choice of the noise threshold

𝜏 and στ provide a measure of propagation delay of interfering signals Then give an indication of how time smearing might occur for the signal. A small στ is desired. The noise threshold is used to differentiate between received multipath components and thermal noise

Small-scale variation Static Multipath effects Dynamic Movement effects

Coherence BW (Bc) and Delay Spread ( ) The Fourier Transform of multipath delay shows frequency (spectral) characteristics of the Wireless Channel (WCh.) depending on how it’s multipath components are distributed over time. Bc : statistical measure of frequency range where WCh response is flat. WCh response is flat = passes all frequencies with ≈ equal gain & linear phase amplitudes of different frequency components are correlated if two sinusoids have frequency separation greater than Bc, they are affected quite differently by the channel.

Amplitude correlation & Phase difference amplitude correlation → multipath signals have close to the same amplitude → if they are then out-of-phase they have significant destructive interference with each other (deep fades) so a flat fading channel is both “good” and “bad” Good: The WCh is like a bandpass filter and passes signals without major attenuation from the channel. Bad: Deep fading can occur.

so the coherence bandwidth is the range of frequencies over which two frequency components have a high probability for amplitude correlation.

Flat fading channel 0.9 correlation → Bc ≈ 1 / 50 (signals are 90% correlated with each other) 0.5 correlation → Bc ≈ 1 / 5 Which has a larger bandwidth and why?

Frequency Selective fading channel A channel that is not a flat fading channel is called frequency selective fading because different frequencies within a signal are attenuated differently by the WCh. Note: The definition of flat or frequency selective fading is defined with respect to the bandwidth of the signal that is being transmitted.

Bc and στ are related quantities that characterize time-varying nature of the WCh. for multipath interference from frequency & time domain perspectives.

Example

Solution

Coherence Time Tc & Doppler spread fD Tc : statistical measure of the time interval over which WCh. impulse response remains invariant → amplitude & phase of multipath signals ≈ constant Coherence Time (Tc) = passes all received signals with virtually the same characteristics because the channel has not changed time duration over which two received signals have a high probability for amplitude correlation Constant

Two signals arriving with a time separation greater than Tc are affected differently by the channel, since the channel has changed within the time interval. For digital communications coherence time and Doppler spread are related by

Time and Frequency Dispersion Fading can be caused by two independent WCh propagation mechanisms: 1) time dispersion → multipath delay (Bc , ) 2) frequency dispersion → Doppler spread (fD , Tc) Important digital Tx signal parameters → symbol period Ts & signal Bandwidth Bs

Symbol Time A pulse can be more than two levels, however, so each period would be called a "symbol period". We send 0 (say +1 Volt) or 1 (say -1 Volt) → one bit per “symbol” Or we could send 10 (+3 Volts) or 00 (+1 Volt) or 01 (-1 Volt) or 11 (-3 Volts) → two bits per “symbol”

WCh static feature parameters These parameters do NOT characterize the time-varying nature of the WCh due to the mobility of the mobile and/or surrounding objects Bc and characterize the statics, (how multipath signals are formed from scattering/reflections and travel different distances) Bc and στ do not characterize the mobility of the Tx or Rx. Mobility, static

WCh varying feature parameters Doppler Spread (fD) & Coherence Time (Tc) fD : measure of spectral broadening of the Tx signal caused by motion → i.e., Doppler shift fD = max Doppler shift = fmax = vmax / λ In what direction does movement occur to create this worst case? if Tx signal bandwidth (Bs) is large such that Bs >> fD then effects of Doppler spread are NOT important so Doppler spread is only important for low (data rate bps ) applications (e.g. paging)

Small-Scale Fading Classification First Dim Second Dim

Time variations property Channel is time variant Time variations property Time spreading property First Dim Second Dim

Fading due to Multipath Delay A)Flat Fading → Bs << Bc or Ts >> signal fits easily within the bandwidth of the channel channel BW >> signal BW Most commonly occurring type of fading

Spectral properties of Tx signal are preserved signal is called a narrowband, since the bandwidth of the signal is narrow with respect to the channel bandwidth signal is not distorted What does Ts >> mean? all multipath signals arrive at mobile Rx during one symbol period ∴ Little intersymbol interference occurs (no multipath components arrive late to interfere with the next symbol)

Flat fading is generally considered desirable Even though fading in amplitude occurs, the signal is not distorted Forward link → can increase mobile Rx gain (automatic gain control) Reverse link → can increase mobile Tx power (power control) Can use diversity techniques (described in a later lectures)

B) Frequency Selective Fading → Bs > Bc or Ts < Bs > Bc → certain frequency components of the signal are attenuated much more than others

Ts < στ → delayed versions of Tx signal arrive during different symbol periods e.g. receiving an LOS → “1” & multipath “0” (from prior symbol!) This results in intersymbol interference (ISI) Undesirable It is very difficult to predict mobile Rx performance with frequency selective channels OFDM !

Fading due to Doppler Spread Caused by motion of Tx and Rx and reflection sources. A) Fast Fading → Bs < fD or Ts > Tc Bs < fD Doppler shifts significantly alter spectral BW of TX signal signal “spreading” (instantaneous modulation) Ts > Tc WCh. changes within one symbol period rapid amplitude fluctuations uncommon in most digital communication systems

B) Slow Fading → Ts << Tc or Bs >> fD WCh constant over many symbol periods slow amplitude fluctuations for v = 60 mph @ fc = 2 GHz → fD = 178 Hz ∴ Bs ≈ 2 kHz >> fD Bs almost always >> fD for most applications ** NOTE: Typically use a factor of 10 to designate “>>” **

Small-Scale Fading Statistical Models To model the statistical characteristics of the channels Rayleigh model Rician Model Nakagami Model

Rayleigh Fading The received signal er(t) arising from the propagation of the signal via multiple paths Structures are located randomly phases φi will be uniformly distributed in the range {0,2π}

Large NX &Y (i.i.d) Gaussian random variables of zero mean. This Gaussianity of X and Y also leads to the envelope of the received signal to be Rayleigh distributed The probability density function (pdf) of the received signal envelope Note that if the envelope of the signal is Rayleigh distributed, the power, P = A2, will have an exponential pdf, given by P0 is the average power. The unique feature of the Rayleigh fading is the independence of the phase and envelope

The short term fading signal (amplitude and power) for 10 multiple paths Linear dB

Rician Fading Direct path between the Tx & Rx represented by a0 cos(2πf0t), where a0 is a constant The received power where X’ is a Gaussian random variable with a nonzero mean equal to a0. The pdf of the power will be given by where I0(.) is the modified Bessel function of the first kind The amount of fading will be less than what is observed in Rayleigh fading.

The Rician factor K0 is defined as The quantity K0 is a measure of the strength of the LOS component, and when K0  0, we have Rayleigh fading. As K0 increases, the fading in the channel declines. K0  , the amount of fading becomes zero.

Nakagami Fading m is called the Nakagami parameter Γ(.) is the gamma function P0 is the average power.

First-order statistics of the channel Quantitative measures of the fading channel. The only required information is the pdf of the SNR. Error probability Outage probability

second-order statistics of the channel Level crossing rates (LCR) is defined as the number of times/unit duration that the envelope crosses the threshold in the negative direction. The average fade duration (AFD) is defined as the average duration of time the envelope stays below the threshold once it goes below.

Level Crossing Rate & average fade duration

Summary