Chapter 11 – Test for the Equality of k

Slides:



Advertisements
Similar presentations
ANalysis Of VAriance can be used to test for the equality of three or more population means. H 0 :  1  =  2  =  3  = ... =  k H a : Not all population.
Advertisements

1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning 
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Analysis of Variance (ANOVA) ANOVA can be used to test for the equality of three or more population means We want to use the sample results to test the.
1 Chapter 10 Comparisons Involving Means  1 =  2 ? ANOVA Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis.
1 1 Slide Slides by JOHN LOUCKS St. Edward’s University.
Chapter 10 Comparisons Involving Means
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1/71 Statistics Inferences About Population Variances.
1 1 Slide © 2009, Econ-2030 Applied Statistics-Dr Tadesse Chapter 10: Comparisons Involving Means n Introduction to Analysis of Variance n Analysis of.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Chapter 11 – Test for the Equality of k Population Means nRejection Rule where the value of F  is based on an F distribution with k - 1 numerator d.f.
1 1 Slide © 2005 Thomson/South-Western AK/ECON 3480 M & N WINTER 2006 n Power Point Presentation n Professor Ying Kong School of Analytic Studies and Information.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
Statistics Design of Experiment.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
© 2006 by Thomson Learning, a division of Thomson Asia Pte Ltd.. 1 Slide Slide Slides Prepared by Juei-Chao Chen Fu Jen Catholic University Slides Prepared.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 30 日 第八週:變異數分析與實驗設計.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
12-1 Chapter Twelve McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 13, Part A Analysis of Variance and Experimental Design n Introduction to Analysis of Variance n Analysis.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 13 Experimental Design and Analysis of Variance nIntroduction to Experimental Design.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Analysis of Variance Chapter 13 BA 303.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
12-1 Chapter Twelve McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
Basic concept Measures of central tendency Measures of central tendency Measures of dispersion & variability.
1 Chapter 13 Analysis of Variance. 2 Chapter Outline  An introduction to experimental design and analysis of variance  Analysis of Variance and the.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide MULTIPLE COMPARISONS. 2 2 Slide Multiple Comparison Procedures n nSuppose that analysis of variance has provided statistical evidence to reject.
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
Week 6 Dr. Jenne Meyer.  Article review  Rules of variance  Keep unaccounted variance small (you want to be able to explain why the variance occurs)
© 2006 by Thomson Learning, a division of Thomson Asia Pte Ltd.. 1 Slide Slide Slides Prepared by Juei-Chao Chen Fu Jen Catholic University Slides Prepared.
1 1 Slide Slides by JOHN LOUCKS St. Edward’s University.
ANalysis Of VAriance can be used to test for the equality of three or more population means. H 0 :  1  =  2  =  3  = ... =  k H a : Not all population.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
1/54 Statistics Analysis of Variance. 2/54 Statistics in practice Introduction to Analysis of Variance Analysis of Variance: Testing for the Equality.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 2 =TWO- WAY ANOVA WITHOUT REPLICATION.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Chapter 11 Created by Bethany Stubbe and Stephan Kogitz.
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
Sampling distribution of
CHAPTER 3 Analysis of Variance (ANOVA) PART 1
CHAPTER 4 Analysis of Variance (ANOVA)
CHAPTER 3 Analysis of Variance (ANOVA)
Statistics Analysis of Variance.
John Loucks St. Edward’s University . SLIDES . BY.
CHAPTER 4 Analysis of Variance (ANOVA)
Statistics for Business and Economics (13e)
Statistics for Business and Economics (13e)
Econ 3790: Business and Economic Statistics
Chapter 11 Inferences About Population Variances
Chapter 10 – Part II Analysis of Variance
Presentation transcript:

Chapter 11 – Test for the Equality of k Population Means Hypotheses H0: 1=2=3=. . . = k Ha: Not all population means are equal Test Statistic F = MSTR/MSE Rejection Rule p-value Approach: Reject H0 if p-value < a Critical Value Approach: Reject H0 if F > Fa where the value of F is based on an F distribution with k - 1 numerator d.f. and nT - k denominator d.f.

Test for the Equality of k Population Means

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design Example: AutoShine, Inc. AutoShine, Inc. is considering marketing a long- lasting car wax. Three different waxes (Type 1, Type 2, and Type 3) have been developed. In order to test the durability of these waxes, 5 new cars were waxed with Type 1, 5 with Type 2, and 5 with Type 3. Each car was then repeatedly run through an automatic carwash until the wax coating showed signs of deterioration.

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design Example: AutoShine, Inc. The number of times each car went through the carwash before its wax deteriorated is shown on the next slide. AutoShine, Inc. must decide which wax to market. Are the three waxes equally effective? Factor . . . Car wax Treatments . . . Type I, Type 2, Type 3 Experimental units . . . Cars Response variable . . . Number of washes

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design Wax Type 1 Wax Type 2 Wax Type 3 Observation 1 2 3 4 5 27 30 29 28 31 33 28 31 30 29 28 30 32 31 Sample Mean 29.0 30.4 30.0 Sample Variance 2.5 3.3 2.5

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design Hypotheses H0: 1=2=3 Ha: Not all the means are equal where: 1 = mean number of washes using Type 1 wax 2 = mean number of washes using Type 2 wax 3 = mean number of washes using Type 3 wax Rejection Rule p-Value Approach: Reject H0 if p-value < .05 Critical Value Approach: Reject H0 if F > 3.89 where F.05 = 3.89 is based on an F distribution with 2 numerator degrees of freedom and 12 denominator degrees of freedom

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design Test Statistic F = MSTR/MSE = 2.60/2.77 = .939 Conclusion The p-value is greater than .10, where F = 2.81. (Excel provides a p-value of .42.) Therefore, we cannot reject H0. There is insufficient evidence to conclude that the mean number of washes for the three wax types are not all the same.

Testing for the Equality of k Population Means: A Completely Randomized Experimental Design ANOVA Table Source of Variation Sum of Squares Degrees of Freedom Mean Squares F p-Value Treatments 5.2 2 2.60 .939 .42 Error 33.2 12 2.77 Total 38.4 14

Testing for the Equality of k Population Means: An Observational Study Example: Reed Manufacturing Janet Reed would like to know if there is any significant difference in the mean number of hours worked per week for the department managers at her three manufacturing plants (in Buffalo, Pittsburgh, and Detroit). An F test will be conducted using a = .05.

Testing for the Equality of k Population Means: An Observational Study Example: Reed Manufacturing A simple random sample of five managers from each of the three plants was taken and the number of hours worked by each manager in the previous week is shown below. Factor . . . Manufacturing plant Treatments . . . Buffalo, Pittsburgh, Detroit Experimental units . . . Managers Response variable . . . Number of hours worked

Testing for the Equality of k Population Means: An Observational Study p -Value and Critical Value Approaches 1. Develop the hypotheses. H0:  1= 2= 3 Ha: Not all the means are equal where:  1 = mean number of hours worked per week by the managers at Plant 1  2 = mean number of hours worked per week by the managers at Plant 2   3 = mean number of hours worked per week by the managers at Plant 3

Testing for the Equality of k Population Means: An Observational Study p -Value and Critical Value Approaches 2. Specify the level of significance. a = .05 3. Compute the value of the test statistic. F = MSTR/MSE = 245/25.667 = 9.55