Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt.

Slides:



Advertisements
Similar presentations
Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of Minnesota Charge redistribution in the β-naphthol-water.
Advertisements

I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Microscopic Systems Division of the Institute.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Nathan R. Pillsbury, Timothy S. Zwier, Department of Chemistry, Purdue University, West Lafayette, IN 47907; David F. Plusquellic, NIST, Gaithersburg,
Spectroscopic Line Shapes Of Broad Band Sum Frequency Generation Himali Jayathilake Igor Stiopkin, Champika Weeraman, Achani Yatawara and Alexander Benderskii.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
A Protein Folding Nucleus in the Gas Phase Jessica Thomas and David Pratt University of Pittsburgh Michel Mons, François Piuzzi, Eric Gloaguen, and Benjamin.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
Vibrational, Electronic, and Fluorescence Spectra and Ab Initio Calculations of 1,4-Benzodioxan (14BZD) Juan Yang, Martin Wagner, Daniel Autrey, and Jaan.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
CONFORMATIONAL SPECIFIC SPECTROSCOPY OF JET COOLED 3-(4-HYDROXYPHENYL)-N-BENZYL- PROPIONAMIDE (HNBPA) ESTEBAN E. BAQUERO, V. ALVIN SHUBERT, AND TIMOTHY.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
The 70 th International Symposium on Molecular Spectroscopy, TH07, June 23, The 70 th Meeting of International Symposium on Molecular Spectroscopy,
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Chong Tao, Calvin Mukarakate, Scott A. Reid Marquette University Richard H. Judge University of Wisconsin-Parkside 63 rd International Symposium on Molecular.
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
Infrared Spectroscopy of the H2/D2-O2 van der Waals Complexes
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
John T. Lawler, Andrew DeBlase, Chris Harrilal, Scott A
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Daniel Tabor1, Patrick Walsh2, Timothy Zwier2, Edwin Sibert1
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
ANALYSIS OF ROTATIONAL STRUCTURE IN THREE C-TYPE BANDS IN THE HIGH-RESOLUTION INFRARED SPECTRUM OF trans,trans-1,3,5-HEXATRIENE NORMAN C. CRAIG, MATTHEW.
The Cs2 a3Su+, 33Sg+, and 33Pg states
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
The Near-IR Spectrum of CH3D
Choi Ilwoo1,3 , Nam Changhee1,2
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
High-Resolution Spectroscopy of the ν16 Band of 1,3,5-Trioxane
The Coordinate Plane Chapter 2 Integers pg. 88.
Metastable States Arising from the Ablation of Solid Copper
High Resolution Laser Spectroscopy of Iridium Monofluoride
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
HIGH RESOLUTION INFRARED SPECTRA OF TRIACETYLENE*
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
AS 2.12 SPECTROSCOPIC TECHNIQUES Infra-red spectra
Ultraviolet Cavity Ringdown Spectra of 2-Cyclohexen-1-one and its Inversion Potential Energy Function Mohamed Rishard, Emily Giles, Jaeboom Choo, Daniel.
Jaime A. Stearns, Monia Guidi, Ulrich Lorenz,
Review.
IR Spectra of CH2OO at resolution 0
Fourier Transform Emission Spectroscopy of CoH and CoD
High-resolution Laser Spectroscopy
ANALYSIS OF ROTATIONAL STRUCTURE IN THE HIGH-RESOLUTION INFRARED SPECTRUM OF CIS,CIS-1,4-DIFLUOROBUTADIENE NORMAN C. CRAIG and MICHAEL C. MOORE,Department.
Tunneling splittings in PH3+ and AsH3+ studied by zero-kinetic energy (ZEKE) photoelectron spectroscopy Yuxiang Mo Department of Physics, Tsinghua University,
Methylindoles – Microwave Spectroscopy
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Using IR to Solve Problems
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
一种基于晶体间光分享原理的深度测量PET探测器
Introduction During the last years the use of Fourier Transform Infrared spectroscopy (FTIR) to determine the structure of biological macromolecules.
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

STUDYING THE STEREOCHEMISTRY OF NAPROXEN USING ROTATIONALLY RESOLVED ELECTRONIC SPECTROSCOPY Justin Young, Leonardo Alvarez-Valtierra and David W. Pratt. University of Pittsburgh Science(2006), vol. 323, pg. 237(4) http://www.novelcs.com/Chirality.html http://www.mcescher.com/

An Example R-naproxen S-naproxen

Diastereomers? S-naproxen R-naproxen Alvarez-Valtierra, L. (2008) University of Pittsburgh. School of Arts and Science

Low Resolution Spectrum IB IR Wavenumbers Chem. Phys. Lett. (2003), 375, pg634

Experimental Setup To Beam Machine (BM)

Red Conformer of S-Naproxen 30584.35 cm-1 30586.06 cm-1 0.08 cm-1 S-Naproxen

Red Conformer of R-Naproxen 30584.35 cm-1 30585.98 cm-1 0.08 cm-1 R-Naproxen

Right Vs. Left S-Naproxen R-Naproxen 0.08 cm-1 0.08 cm-1

Red Conformer Inertial Parameters S-Naproxen (Red) R-Naproxen S0 A” (MHz) 1241.59 (6) 1241.56 (5) B” (MHz) 214.70 (3) 214.73 (3) C” (MHz) 202.15 (3) 202.16 (3) ∆I” (amu Ǻ2) -260.8 (4) -260.7 (4) S1 A’ (MHz) 1217.62 (5) 1217.59 (5) B’ (MHz) 215.49 (3) 215.50 (3) C’ (MHz) 202.44 (2) 202.46 (2) -263.8 (4) -263.9 (4) a/b/c-character 8.3/87.6/4.2 7.8/88.7/3.5 Band origin (cm-1) 30585.2 OMC (MHz) 2.91 2.88 Temp (K) 3.0

R-Naproxen Blue Conformer 30686.50 cm-1 30687.96 cm-1 0.08 cm-1 R-Naproxen

S-Naproxen Blue Conformer 30686.50 cm-1 30687.96 cm-1 0.08 cm-1 S-Naproxen

Right Vs. Left R-Naproxen S-Naproxen 0.08 cm-1 0.08 cm-1

Blue Conformer Inertial Parameters S-Naproxen (Blue) R-Naproxen S0 A” (MHz) 1315.80 (6) 1315.71 (7) B” (MHz) 205.36 (3) 205.30 (3) C” (MHz) 196.10 (3) 196.07 (3) ∆I” (amu A2) -267.9 (5) -267.9(5) S1 A’ (MHz) 1304.20 (5) 1304.10 (7) B’ (MHz) 204.90 (3) 204.87 (4) C’ (MHz) 195.46 (3) 195.45 (3) ∆I” (amu Ǻ2) -268.4 (5) -268.9 (6) a/b/c-character 5.6/84.7/0.7 Band origin (cm-1) 30687.2 OMC (MHz) 3.32 3.91 Temp (K) 3.0

Possible R-Conformations R-Naproxen I R-Naproxen II R-Naproxen III R-Naproxen IV R-Naproxen V R-Naproxen VI MP2 / 6-31G**

Conformation Determination Experimental Theory Red Blue I II III IV V VI A” 1241.5 1315.7 1314.9 1240.6 1447.6 1254.8 1274.0 1226.7 B” 214.7 205.3 205.7 215.7 198.1 214.1 214.2 213.6 C” 202.2 196.07 195.7 202.1 191.4 200.6 197.2 199.7 MP2 / 6-31G** R-naproxen II R-naproxen I

Experimental vs. Theoretical Results (MP2 / 6-31G**) S-Naproxen (Naproxen I) R-Naproxen (Naproxen II) S0 A” (MHz) 1315.0 1314.9 1240.5 1240.6 B” (MHz) 205.7 215.7 C” (MHz) 195.7 202.1 ∆I” (amu A2) -258.8 -249.7 Experimental (Blue) (Red) A” (MHz) 1315.80 (6) 1315.71 (7) 1241.59 (6) 1241.56 (5) 205.36 (3) 205.30 (3) 214.70 (3) 214.73 (3) 196.10 (3) 196.07 (3) 202.15 (3) 202.16 (3) ∆I” (amu Ǻ2) -267.9 (5) -267.9(5) -260.8 (4) -260.7 (4) MP2 / 6-31G**

Lowest Energy Conformations S-naproxen II R-naproxen II S-naproxen I R-naproxen I Chem. Phys. Lett. (2003), 375, pg634 MP2 / 6-31G**

c c b b a a S-naproxen II R-naproxen II c c a a b b R-naproxen I S-naproxen I

Summary Rotationally resolved electronic spectra of R- and S-naproxen were obtained. For each enantiomer two conformations were assigned. As expected the conformations R and S-naproxen have matching spectra and inertial parameters

Future work Chiral axis Chiral center Diastereomers

Acknowledgments Leonardo Alvarez, Ryan Bird, Casey Clements, Adam Fleisher, Philip Morgan and Jessica Thomas Professor David W. Pratt for his encouragement and continuing support Funding by the National Science Foundation (CHE-0615755)