Revue des mesures de temps ASIC/FPGA du pôle MicRhAu

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

A Low-Power Wave Union TDC Implemented in FPGA
JLab High Resolution TDC Hall D Electronics Review (7/03) - Ed Jastrzembski.
End of Column Circuits Sakari Tiuraniemi - CERN. EOC Architecture 45 9 Ref CLK 40 MHz DLL 32-bit TDC bank address RX 5 TDC bank address RX 5 TDC bank.
On-Chip Processing for the Wave Union TDC Implemented in FPGA
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
1 MTD Readout Electronics J. Schambach University of Texas Hefei, March 2011.
TDC in ACTEL FPGA Tom Sluijk Wilco Vink Albert Zwart Fabian Jansen.
Improving Single Slope ADC and an Example Implemented in FPGA with 16
Stop Watch Sean Hicks Dongpu Jin ELEC 307 Project 2 Instructor: Alvaro Pinto April/12/2011.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec th 2007.
Low Cost TDC Using FPGA Logic Cell Delay Jinyuan Wu, Z. Shi For CKM Collaboration Jan
Bill W. Haynes Slide 1 February 26, 2002 CKM Precision Timing CKM Workshop In San Luis Potosi, Mexico u Common Design for Multiple Timing Applications.
U niversity of S cience and T echnology of C hina Design for Distributed Scheme of WCDA Readout Electronics CAO Zhe University of Science and Technology.
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
Fast Waveform Digitizing in Radiation Detection using Switched Capacitor Arrays Stefan Ritt Paul Scherrer Institute, Switzerland.
TDC and ADC Implemented Using FPGA
TDC for SeaQuest Wu, Jinyuan Fermilab Jan Jan. 2011, Wu Jinyuan, Fermilab TDC for SeaQuest 2 Introduction on FPGA TDC There are.
On-Chip Reliability Monitor for Measuring Frequency Degradation of Digital Circuits Department of Electrical and Computer Engineering By Han Lin Jiun-Yi.
A Novel Digitization Scheme with FPGA-based TDC for Beam Loss Monitors Operating at Cryogenic Temperature Wu, Jinyuan, Arden Warner Fermilab Oct
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
L: Caponetto – Journées VLSI Marseille CPPM – Juin , 2014 HODOPIC: a multi channel front-end ASIC for a beam tagging hodoscope L. Caponetto, S. Deng,
1 D. BRETON 1, L.LETERRIER 2, V.TOCUT 1, Ph. VALLERAND 2 (1) LAL ORSAY - France (2) LPC CAEN - France Super Nemo Absolute Time Stamper A high resolution.
Digitization at Feed Through Wu, Jinyuan Fermilab Feb
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
Spring 2006CSE 597A: Analog-Digital IC Design Scan-Flash ADC Low Power, High-Throughput AD Converters Melvin Eze Pennsylvania State University
Hugo Furtado CERN - Microelectronics Group 11th Workshop on Electronics for LHC and future Experiments Delay25, an ASIC for timing adjustment in LHC Delay25.
TDC and ADC Implemented Using FPGA
End OF Column Circuits – Design Review
E.Bechetoille, M.Dahoumane , I.Laktineh, H.Mathez
DCH FEE STATUS Level 1 Triggered Data Flow FEE Implementation &
vXS fPGA-based Time to Digital Converter (vfTDC)
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
Baby-Mind SiPM Front End Electronics
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
implementation of a 42 ps tdc based on fpga target
Integrated Circuits for the INO
ETD meeting Electronic design for the barrel : Front end chip and TDC
Christophe Beigbeder PID meeting
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
FPGA implementation of a multi-channels, 1 ns time resolution, multi-hit TDC Lorenzo Iafolla Lorenzo Iafolla SuperB Workshop.
Hellenic Open University
QUARTIC TDC Development at Univ. of Alberta
TDC at OMEGA I will talk about SPACIROC asic
The MDT TDC ASIC Development
Next generation 3D digital SiPM for precise timing resolution
Phase shifter design for Macro Pixel ASIC
02 / 02 / HGCAL - Calice Workshop
SKIROC status Calice meeting – Kobe – 10/05/2007.
Read Delay Simulations
Basic Adders and Counters Implementation of Adders
Stefan Ritt Paul Scherrer Institute, Switzerland
On behalf of MDC electronics group
Signal processing for High Granularity Calorimeter
Towards a Fully Digital State-of-the-art Analog SiPM
The ATLAS LAr. Calibration board K. Jakobs, U. Schaefer, D. Schroff
TOF read-out for high resolution timing
Readout electronics system for Laser TPC prototype
Orsay Talks Christophe : General questions and future developments.
for BESIII MDC electronics Huayi Sheng
Front-end Digitization for fast Imagers.
Phase Frequency Detector &
Presentation transcript:

Revue des mesures de temps ASIC/FPGA du pôle MicRhAu

Time line VGRO sur Cyclone III CRONOTIC 32-ch, LSB:20ps target TDC_BRICK VGRO LSB=60ps Phase Detect~1psRMS S-curve XOR ring oscillator CRONOTIC 32-ch, LSB:20ps target CRONOTIC2 Multi-detecteur de phase [TODO, Thèse CIFRE] ASIC HODOPIC DLL LSB=200ps Resolution=700psRMS 2013 2014 2015 2016 2017 C. Girerd, VGRO sur Cyclone III LSB=20ps over 2.4ns range CMS_muon  Sept2017 64-ch, TDC of 35 psRMS (Generator) 200 psRMS With detector [TODO] FPGA 24-ch, TDC of 25 psRMS Tsinghua university for RPC/MGRPC Remarque : erreur incompressible de pas de quantifiquation LSB~RMS*sqrt(12) LSB ≠ resolution RMS

TDC_BRICK (IBM 130nm) ASIC FPGA [1] Youngmin Park Wentzloff Start Enable Slow Ring Oscillator N0 Counter Phase detector Latch TDC result Fast Ring Oscillator N1 Counter Stop Enable - Simple architecture: Low Area, low consumption, can implemented in standard cells The TDC resolution is given by the frequency difference between oscillators In theory the resolution can be very small, as small as the frequency difference ASIC [1] Youngmin Park Wentzloff [2] Jianjun Yu Process 65 nm 130 nm Resolution 1 ps * 8 ps DNL/INL 0.5/0.8 ** 0.5/0.8 FPGA [3] Sachin S. Junnarkar This Work Process ALTERA Stratix II Cyclone III Resolution 11.8 ps (rms) ~ 10 ps * DNL/INL 0.5 / 1 - *Range 0 to 130 ps ** Simulation * under test Slides from C.Girerd

Presenté à VLSI 2014, marseille TDC_BRICK (IBM 130nm) Presenté à VLSI 2014, marseille period [ns]=f(code) Sdev [s] Xtalk Delay_IN Pas=150[ps] Si LSB=20ps  pas OK Si LSB=150ps  OK sur 3ns Si LSB=60ps  OK sur 1ns

TDC_BRICK (IBM 130nm) Minimum set-up time = 15 ps Propagation delay D to Q Propagation delay CLK to Q Minimum set-up time = 15 ps (include generator jitter) 6 ps width RMS resolution = 1ps (include generator jitter)

Clock reference of 1 GHz is used as stop signal on the fast oscillator CRONOTIC (TSMC 130nm) Clock reference of 1 GHz is used as stop signal on the fast oscillator Vdd D Q Slow Oscillator slow Counter Event (start) Vdd D Q R T = (N0*T0)-(N1*T1) Phase detector TDC result Enable R D Q Fast Oscillator fast Counter Clk_Ref (stop) R Ready Reset Start Stop Clk ref T Event 1 2 3 4 5 Phase detection T0 Oscillator stop T1 t 1 2

Signal processing Board CRONOTIC (TSMC 130nm) Top Clk ref (40 MHz) Coarse counter Event (Trigger) stop count (Clk ref = k * 40MHz) Fast Clk ref. Generator (PLL) TX_SLVS c Fine counter RX_SLVS stop count S E R I A L Z Clk ref. period 1 to 2 ns Simplified TDC channel Slow counter 10 bits Signal processing Board Slow Oscillator start Osc. In slow calib. c Phase detector Ready Fast Oscillator start Osc. c In fast calib. Fast counter 10 bits c c I2C Calibration RST global c ASIC (1 ch.)

CRONOTIC (TSMC 130nm) TSMC 130 nm process 32 channel Triple-voting rad-hard digital Dimensions : 2,400 x 2,450 mm2 Submitted Nov 2nd 2016 ASIC returned from fab by end of January Packaging is done (CQFP 128) Test board must be designed, it started by beginning of March Credit : M. Dahoumane

CRONOTIC 2 Détecteur de phase multiples Deux Ring oscillateurs (f_Slow < f_Fast) 8 éléments de retard en différentielle  16 transitions S(1) à S(8), S(1) à S(8) et F(1) à F(8), F(1) à F(8) Une matrice de détection de phase PDij avec i=[1..8] et j=[1..8] La résolution LSB = delay_slow – delay_fast Réduire le temps mort, et le jitter cumulé

CRONOTIC 2 T_Hit = (Ns Ts - Nf Tf ) + (ns τs – nf τf ) T_Hit= (16N+n)(τs-τf)  avec Ts=16τs, Tf=16τf si Ns=Nf et ns=nf

Re-ordonner la position des détecteur de phase time [ns]