Deep-sea neutrino telescopes

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
By E. Anassontzis, A. Belias, E. Kappos, K. Manolopoulos, P. Rapidis on behalf of the KM3NeT Collaboration.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
Paolo Musico on behalf of KM3NeT collaboration The Central Logic Board for the KM3NeT detector: design and production Abstract The KM3NeT deep sea neutrino.
Introduction to future synergy options Uli Katz ECAP, Univ. Erlangen Deep Ocean Cabled Observatories Amsterdam, May 2012.
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
The ANTARES experiment is currently the largest underwater neutrino telescope and is taking high quality data since Sea water is used as the detection.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
WP2 meeting, Oct 2006, CPPM Claudine Colnard - NIKHEF Claudine Colnard, Ronald Bruijn, Eleonora Presani, Siemen Meester, Paul Kooijman (presented by Maarten.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
A sensor architecture for neutrino telescopes on behalf of the KM3NeT consortium Els de Wolf Thank you, Claudio!
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
Disk WP-4 “Information Technology” J. Hogenbirk/M. de Jong  Introduction (‘Antares biased’)  Design considerations  Recent developments  Summary.
Antares Slow Control Status 2007 International Conference on Accelerator and Large Experimental Physics Control Systems - Knoxville, Tennessee - October.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
The KM3NeT consortium ( - supported through the European Union's 6th framework programme in a 3-year Design Study - aims at the construction.
Disk Towards a conceptual design M. de Jong  Introduction  Design considerations  Design concepts  Summary.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
The Trigger and Data Acquisition System for the KM3NeT neutrino telescope Carmelo Pellegrino Tommaso Chiarusi INFN - Sezione di Bologna VLVnT 2015 | Rome,
The sector of the Antares line to be deployed in the NEMO site Davide Piombo – INFN sez. Genova
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Antares status and plans  Reminder  Project status  Plans M. de Jong.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Neutrino telescopes: ANTARES and KM3NeT Maarten de Jong Programme: Group composition (current): 6+2 staff, 4 post-doc, 4 PhD. Vidi 1, Veni 1+1.
DOM Electronics (Digital Optical Module) 1 WPFLElectronics PPMDOM ElectronicsF. Louis.
Earth-Sea Science Junction Boxes
WP F/L Detection Unit Mechanical Structure and Deployment R. Papaleo 130/03/2011.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
DOM developments Mini DOM PPM-DOM in Antares PPM future WP F-L.
IRFU The ANTARES Data Acquisition System S. Anvar, F. Druillole, H. Le Provost, F. Louis, B. Vallage (CEA) ACTAR Workshop, 2008 June 10.
Status Antares & KM3NeT SAC 2010 Maarten de Jong.
Pre-Production Models for KM3NeT
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
The dynamic range extension system for the LHAASO-WCDA experiment
ANTARES Lessons learned from its completion
DAQ read out system Status Report
On behalf of Patrick Lamare
Write-up and Definitions for Cost Model
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Pasquale Migliozzi INFN Napoli
Interdisciplinary Activity ANTARES
Els de Wolf, Nikhef/UvA KM3NeT WP345-meeting 23 February 2009
Robert Lahmann VLVnT – Toulon – 24-April-2008
T. Eberl for Robert Lahmann and the Erlangen acoustic group
White Rabbit in KM3NeT Mieke Bouwhuis NIKHEF 9th White Rabbit Workshop
Els de Wolf 20 February 2012, Catania
Overview of AMADEUS and Positioning for KM3NeT
Junction Boxes for KM3NeT
PPM-DOM. SPM DOM LCM SS-part ILxx
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
KM3NeT: where are we and where do we go
Making Networks Light March 29, 2018 Charleston, South Carolina.
Instrumentation and Methods in Astroparticle Physics Physics 801
Commodity Flash ADC-FPGA Based Electronics for an
Characteristics of Reconfigurable Hardware
Fiber Optic Transmission
Fibre Optic Transmission
Nanobeacon: A low cost calibration instrument for KM3NeT
Presentation transcript:

Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University

contents Neutrino astronomy Antares KM3NeT issues, ideas prototype next generation neutrino telescope issues, ideas

Neutrino astronomy n g p neutrinos Why neutrinos? no absorption no bending Scientific motivation: origin cosmic rays creation& composition relativistic jets mechanism cosmic particle acceleration composition dark matter neutrino telescope

Use sea water as target/detector 1960 Markov’s idea: Use sea water as target/detector range of muon detect Cherenkov light transparency of water

muon travels with speed of light (300,000 km/s) → ns (10 cm) @ km How? wavefront neutrino muon 1 2 3 4 5 ~100 m interaction ~few km muon travels with speed of light (300,000 km/s) → ns (10 cm) @ km

General layout light detection real-time event distribution 3-5 km shore station transmission of (all) data data filter

prototype neutrino telescope Antares prototype neutrino telescope ‒ 100 persons ‒ 25 M€ 1997‒2005 R&D site explorations measurements of water properties 2005‒2008 construction-operation 2008‒2017 operation

Antares 12 lines ~2.5 km 500 m 250 Atm. ~200x200 m2 25 storeys / line

Detection unit Optical beacon timing calibration 10” PMT photon detection Electronics readout Hydrophone acoustic positioning ~1 m titanium frame mechanical support

Dutch industry Gb/s transceiver passive cooling DC–DC converter

wet-matable connector (2) deep-sea network connector (3) penetrator (2) container CPU FPGA PMT e/o 100 Mb/s 5x15 m optical fiber (21) penetrator (3) container Ethernet switch 1 Gb/s e/o e/o 5‒25x15 m junction box container DWDM filter optical fiber (4) (40) 1 km 40 km wet-matable connector (2)

data flow time CPU CPU CPU CPU CPU CPU off-shore on shore Ethernet switch data filter data filter data filter

data flow time CPU CPU CPU CPU CPU CPU off-shore on shore Ethernet switch data filter data filter data filter

data flow time CPU CPU CPU CPU CPU CPU off-shore on shore Ethernet switch data filter data filter data filter

Antares deep-sea infrastructure 1 km3 one main electro-optical cable 900 PMTs, hydrophones, ADCP, seismometers, etc. 10 kW, 1 GB/s one main electro-optical cable 50 km, AC, 1 cupper conductor + sea return network active multiplexing locally (Ethernet standard) passive multiplexing based on DWDM technology low number of channels for reliability of offshore transceiver (l stability) operation 10 years (some maintenance’ data transmission signal recovery by amplification

definitive neutrino telescope KM3NeT definitive neutrino telescope ‒ 300 persons ‒ 200 M€ 2005‒2008 design study 2008‒2012 preparatory phase 2013‒2017 construction

Optical module (camera) 31 x 3” PMT Electronics inside

wet-matable connector (1) deep-sea network optical modulator lj+1 integrate timing system (GHz = ns) minimise offshore electronics penetrator (1) receiver lj receiver laser wet-matable connector (1) DWDM laser DWDM shore station

Needs new deployment technique Storey Frame Mechanical cable storage Data cable storage Mechanical cable connection Optical module 6 m Mechanical holder 1 Digital Optical Module = Dom 2 Dom’s on 1 bar = Dom-bar 20 Dom-bar’s on 1 tower = Dom tower Needs new deployment technique

Earth & Sea sciences short lived (rare) events dominate deep-sea life permanent observatory France Temperature Bioluminescence sudden Eddie currents food supply observatory time profile

KM3NeT deep-sea infrastructure 10 km3 two main electro-optical cables >100,000 PMTs, hydrophones, ACDP, seismometers, etc. <100 kW, 100 GB/s two main electro-optical cables 100 km, DC, 1 cupper conductor + sea return network PON, point-to-point + amplification new Ethernet standard Precision-Time-Protocol (”White Rabbit”) operation 10 years without maintenance

Issues, ideas, etc.

Deep-sea infrastructure materials containers (glass, Ti, Al) mechanics drag, deployment, etc. cables dry versus oil-filled little experience with vertical orientation wet-matable connectors expensive (combined fiber and cupper wires) bulky (problems with handling) penetrators source of single-point-failures (error propagation)

data taking & processing network high-bandwidth & long haul integration of data transmission & timing (PTP) (real-time) data distribution monitoring archival offline analysis (astronomy, etc.) external triggers satellites, other infrastructures computing (real-time) data processing algorithms (reduction of complexity & parallelization of problem) implementation (state-of-the-art OO-programming) hardware (multi-core, GPUs)

Fiber technology data transmission Energy transmission sensor laser/[A]PD flexible (2 x transceiver = point-to-point link) active feedback loop (intrinsically instable power, l) non-negligible electrical power consumption modulators wavelength, phase, intensity, polarization very low power reliable amplification long-haul communication Energy transmission ? sensor e.g. Bragg reflectrometer as deep-sea hydrophones sensitivity low weight…