Splash Screen
Five-Minute Check (over Lesson 1–5) CCSS Then/Now New Vocabulary Key Concept: “And” Compound Inequalities Example 1: Solve an “And” Compound Inequality Key Concept: “Or” Compound Inequalities Example 2: Solve an “Or” Compound Inequality Example 3: Solve Absolute Value Inequalities Key Concept: Absolute Value Inequalities Example 4: Solve a Multi-Step Absolute Value Inequality Example 5: Real-World Example: Write and Solve an Absolute Value Inequality Lesson Menu
Solve the inequality 3x + 7 > 22 Solve the inequality 3x + 7 > 22. Graph the solution set on a number line. A. {x | x > 5} B. {x | x < 5} C. {x | x > 6} D. {x | x < 6} 5-Minute Check 1
Solve the inequality 3x + 7 > 22 Solve the inequality 3x + 7 > 22. Graph the solution set on a number line. A. {x | x > 5} B. {x | x < 5} C. {x | x > 6} D. {x | x < 6} 5-Minute Check 1
Solve the inequality 3(3w + 1) ≥ 4. 8 Solve the inequality 3(3w + 1) ≥ 4.8. Graph the solution set on a number line. A. {w | w ≤ 0.2} B. {w | w ≥ 0.2} C. {w | w ≥ 0.6} D. {w | w ≤ 0.6} 5-Minute Check 2
Solve the inequality 3(3w + 1) ≥ 4. 8 Solve the inequality 3(3w + 1) ≥ 4.8. Graph the solution set on a number line. A. {w | w ≤ 0.2} B. {w | w ≥ 0.2} C. {w | w ≥ 0.6} D. {w | w ≤ 0.6} 5-Minute Check 2
Solve the inequality 7 + 3y > 4(y + 2) Solve the inequality 7 + 3y > 4(y + 2). Graph the solution set on a number line. A. {y | y > 1} B. {y | y < 1} C. {y | y > –1} D. {y | y < –1} 5-Minute Check 3
Solve the inequality 7 + 3y > 4(y + 2) Solve the inequality 7 + 3y > 4(y + 2). Graph the solution set on a number line. A. {y | y > 1} B. {y | y < 1} C. {y | y > –1} D. {y | y < –1} 5-Minute Check 3
Solve the inequality . Graph the solution set on a number line. A. {w | w ≤ –9} B. {w | w ≥ –9} C. {w | w ≤ –3} D. {w | w ≥ –3} 5-Minute Check 4
Solve the inequality . Graph the solution set on a number line. A. {w | w ≤ –9} B. {w | w ≥ –9} C. {w | w ≤ –3} D. {w | w ≥ –3} 5-Minute Check 4
A company wants to make at least $255,000 profit this year A company wants to make at least $255,000 profit this year. By September, the company made $127,500 in profit. The company plans to earn, on average, $15,000 each week in profit. Will the company reach its goal by the end of the year? A. yes B. no 5-Minute Check 5
A company wants to make at least $255,000 profit this year A company wants to make at least $255,000 profit this year. By September, the company made $127,500 in profit. The company plans to earn, on average, $15,000 each week in profit. Will the company reach its goal by the end of the year? A. yes B. no 5-Minute Check 5
Mathematical Practices 5 Use appropriate tools strategically. CCSS
You solved one-step and multi-step inequalities. Solve compound inequalities. Solve absolute value inequalities. Then/Now
compound inequality intersection union Vocabulary
Concept
Solve 10 3y – 2 < 19. Graph the solution set on a number line. Solve an “And” Compound Inequality Solve 10 3y – 2 < 19. Graph the solution set on a number line. Method 1 Solve separately. Write the compound inequality using the word and. Then solve each inequality. 10 3y – 2 and 3y – 2 < 19 12 3y 3y < 21 4 y y < 7 4 y < 7 Example 1
Method 2 Solve both together. Solve an “And” Compound Inequality Method 2 Solve both together. Solve both parts at the same time by adding 2 to each part. Then divide each part by 3. 10 3y – 2 < 19 12 3y < 21 4 y < 7 Example 1
Solve an “And” Compound Inequality Graph the solution set for each inequality and find their intersection. 4 y < 7 y < 7 y 4 Answer: Example 1
Answer: The solution set is y | 4 y < 7. Solve an “And” Compound Inequality Graph the solution set for each inequality and find their intersection. 4 y < 7 y < 7 y 4 Answer: The solution set is y | 4 y < 7. Example 1
What is the solution to 11 2x + 5 < 17? B. C. D. Example 1
What is the solution to 11 2x + 5 < 17? B. C. D. Example 1
Concept
Solve each inequality separately. –x –4 or x + 3 < 2 x < –1 Solve an “Or” Compound Inequality Solve x + 3 < 2 or –x –4. Graph the solution set on a number line. Solve each inequality separately. –x –4 or x + 3 < 2 x < –1 x 4 x < –1 or x 4 x < –1 x 4 Answer: Example 2
Solve each inequality separately. –x –4 or x + 3 < 2 x < –1 Solve an “Or” Compound Inequality Solve x + 3 < 2 or –x –4. Graph the solution set on a number line. Solve each inequality separately. –x –4 or x + 3 < 2 x < –1 x 4 x < –1 or x 4 x < –1 x 4 Answer: The solution set is x | x < –1 or x 4. Example 2
What is the solution to x + 5 < 1 or –2x –6 What is the solution to x + 5 < 1 or –2x –6? Graph the solution set on a number line. A. B. C. D. Example 2
What is the solution to x + 5 < 1 or –2x –6 What is the solution to x + 5 < 1 or –2x –6? Graph the solution set on a number line. A. B. C. D. Example 2
A. Solve 2 > |d|. Graph the solution set on a number line. Solve Absolute Value Inequalities A. Solve 2 > |d|. Graph the solution set on a number line. 2 > |d| means that the distance between d and 0 on a number line is less than 2 units. To make 2 > |d| true, you must substitute numbers for d that are fewer than 2 units from 0. Notice that the graph of 2 > |d| is the same as the graph of d > –2 and d < 2. All of the numbers between –2 and 2 are less than 2 units from 0. Answer: Example 3
A. Solve 2 > |d|. Graph the solution set on a number line. Solve Absolute Value Inequalities A. Solve 2 > |d|. Graph the solution set on a number line. 2 > |d| means that the distance between d and 0 on a number line is less than 2 units. To make 2 > |d| true, you must substitute numbers for d that are fewer than 2 units from 0. Notice that the graph of 2 > |d| is the same as the graph of d > –2 and d < 2. All of the numbers between –2 and 2 are less than 2 units from 0. Answer: The solution set is d | –2 < d < 2. Example 3
A. What is the solution to |x| > 5? B. C. D. Example 3a
A. What is the solution to |x| > 5? B. C. D. Example 3a
B. What is the solution to |x| < 5? A. {x | x > 5 or x < –5} B. {x | –5 < x < 5} C. {x | x < 5} D. {x | x > –5} Example 3b
B. What is the solution to |x| < 5? A. {x | x > 5 or x < –5} B. {x | –5 < x < 5} C. {x | x < 5} D. {x | x > –5} Example 3b
Concept
Solve |2x – 2| 4. Graph the solution set on a number line. Solve a Multi-Step Absolute Value Inequality Solve |2x – 2| 4. Graph the solution set on a number line. |2x – 2| 4 is equivalent to 2x – 2 4 or 2x – 2 –4. Solve each inequality. 2x – 2 4 or 2x – 2 –4 2x 6 2x –2 x 3 x –1 Answer: Example 4
Solve |2x – 2| 4. Graph the solution set on a number line. Solve a Multi-Step Absolute Value Inequality Solve |2x – 2| 4. Graph the solution set on a number line. |2x – 2| 4 is equivalent to 2x – 2 4 or 2x – 2 –4. Solve each inequality. 2x – 2 4 or 2x – 2 –4 2x 6 2x –2 x 3 x –1 Answer: The solution set is x | x –1 or x 3. Example 4
What is the solution to |3x – 3| > 9 What is the solution to |3x – 3| > 9? Graph the solution set on a number line. A. B. C. D. Example 4
What is the solution to |3x – 3| > 9 What is the solution to |3x – 3| > 9? Graph the solution set on a number line. A. B. C. D. Example 4
The starting salary can differ from the average Write and Solve an Absolute Value Inequality A. JOB HUNTING To prepare for a job interview, Hinda researches the position’s requirements and pay. She discovers that the average starting salary for the position is $38,500, but her actual starting salary could differ from the average by as much as $2450. Write an absolute value inequality to describe this situation. Let x = the actual starting salary. The starting salary can differ from the average by as much as $2450. |38,500 – x| 2450 Answer: Example 5
The starting salary can differ from the average Write and Solve an Absolute Value Inequality A. JOB HUNTING To prepare for a job interview, Hinda researches the position’s requirements and pay. She discovers that the average starting salary for the position is $38,500, but her actual starting salary could differ from the average by as much as $2450. Write an absolute value inequality to describe this situation. Let x = the actual starting salary. The starting salary can differ from the average by as much as $2450. |38,500 – x| 2450 Answer: |38,500 – x| 2450 Example 5
Write and Solve an Absolute Value Inequality B. JOB HUNTING To prepare for a job interview, Hinda researches the position’s requirements and pay. She discovers that the average starting salary for the position is $38,500, but her actual starting salary could differ from the average by as much as $2450. Solve the inequality to find the range of Hinda’s starting salary. | 38,500 – x | 2450 Rewrite the absolute value inequality as a compound inequality. Then solve for x. –2450 38,500 – x 2450 –2450 – 38,500 –x 2450 – 38,500 –40,950 –x –36,050 40,950 x 36,050 Example 5
Write and Solve an Absolute Value Inequality Answer: Example 5
Write and Solve an Absolute Value Inequality Answer: The solution set is x | 36,050 x 40,950. Hinda’s starting salary will fall within $36,050 and $40,950. Example 5
A. HEALTH The average birth weight of a newborn baby is 7 pounds A. HEALTH The average birth weight of a newborn baby is 7 pounds. However, this weight can vary by as much as 4.5 pounds. What is an absolute value inequality to describe this situation? A. |4.5 – w| 7 B. |w – 4.5| 7 C. |w – 7| 4.5 D. |7 – w| 4.5 Example 5a
A. HEALTH The average birth weight of a newborn baby is 7 pounds A. HEALTH The average birth weight of a newborn baby is 7 pounds. However, this weight can vary by as much as 4.5 pounds. What is an absolute value inequality to describe this situation? A. |4.5 – w| 7 B. |w – 4.5| 7 C. |w – 7| 4.5 D. |7 – w| 4.5 Example 5a
B. HEALTH The average birth weight of a newborn baby is 7 pounds B. HEALTH The average birth weight of a newborn baby is 7 pounds. However, this weight can vary by as much as 4.5 pounds. What is the range of birth weights for newborn babies? A. {w | w ≤ 11.5} B. {w | w ≥ 2.5} C. {w | 2.5 ≤ w ≤ 11.5} D. {w | 4.5 ≤ w ≤ 7} Example 5b
B. HEALTH The average birth weight of a newborn baby is 7 pounds B. HEALTH The average birth weight of a newborn baby is 7 pounds. However, this weight can vary by as much as 4.5 pounds. What is the range of birth weights for newborn babies? A. {w | w ≤ 11.5} B. {w | w ≥ 2.5} C. {w | 2.5 ≤ w ≤ 11.5} D. {w | 4.5 ≤ w ≤ 7} Example 5b
End of the Lesson