Hamiltonian Flow in Coulomb Gauge Yang-Mills theory

Slides:



Advertisements
Similar presentations
Nagoya March. 20, 2012 H. Terao. (Nara Women’s Univ.)
Advertisements

Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
Phase Structure of Thermal QCD/QED: A “Gauge Invariant” Analysis based on the HTL Improved Ladder Dyson-Schwinger Equation Hisao NAKKAGAWA Nara University.
Solving non-perturbative renormalization group equation without field operator expansion and its application to the dynamical chiral symmetry breaking.
Gerard ’t Hooft Spinoza Institute Utrecht, the Netherlands Utrecht University.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
January 16, 2001Physics 8411 Introduction to Feynman Diagrams and Dynamics of Interactions All known interactions can be described in terms of forces forces:
From gluons to hybrids : Coulomb gauge perspective Adam Szczepaniak IU Gluons and glueballs in Coulomb gauge Gluelumps and Hybrids Spectrum of gluonic.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.
Outline: 1. 1.Introduction: RG fixed points and cyclic limits 2. 2.Extended BCS Hamiltonian 3. 3.Mean-field solution 4. 4.Beta function and cyclic RG 5.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Variational Approach to Non- Equilibrium Gluodynamics 東京大学大学院 総合文化研究科 西山陽大.
IR QCD properties from ST, DS, and LQCD QCD conference St Goar, March 17-20, 2008 Ph.,Boucaud, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez-Quintero,
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter,
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
The Origins of Lattice Gauge Theory Kenneth G. Wilson The Ohio State University.
Background Independent Matrix Theory We parameterize the gauge fields by M transforms linearly under gauge transformations Gauge-invariant variables are.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Hamiltonian approach to Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W.
Heavy quark potential at non-zero temperature and quarkonium spectral function Péter Petreczky 29 th Winter Workshop on Nuclear Dynamics, Squaw Valley,
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Xin-Jian Wen ( 温新建 ) CCNU Shanxi University Efrain J. Ferrer & Vivian de la Incera University of Texas at El Paso Anisotropic structure of the.
1 CONFINING INTERQUARK POTENTIALS FROM NON ABELIAN GAUGE THEORIES COUPLED TO DILATON Mohamed CHABAB LPHEA, FSSM Cadi- Ayyad University Marrakech, Morocco.
Gribov copy problem in lattice gauge theory simulation Bornyakov Vitaly IHEP & ITEP ICHEP
A new method of calculating the running coupling constant --- numerical results --- Etsuko Itou (YITP, Kyoto University) Lattice of William.
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
Three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP) hep-th/
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
LORENTZ AND GAUGE INVARIANT SELF-LOCALIZED SOLUTION OF THE QED EQUATIONS I.D.Feranchuk and S.I.Feranchuk Belarusian University, Minsk 10 th International.
Phase Structure of Thermal QCD/QED through the HTL Improved Ladder Dyson-Schwinger Equation Hisao NAKKAGAWA Nara University in collaboration with Hiroshi.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
QQ systems are ideal for strong interactions studies Scales and Effective Field Theories:systematic approach pNRQCD: the QQbar and QQQ potentials Applications.
CHARM th International Workshop on Charm Physics Honolulu May
TRAN HUU PHAT Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi, VN. NGUYEN TUAN ANH Institute for Nuclear Science and Technique, 179 Hoang Quoc.
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
The BV Master Equation for the Gauge Wilson Action
Spectral functions in functional renormalization group approach
From Lagrangian Density to Observable
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
NGB and their parameters
Classical strongly coupled quark-gluon plasma
7/6/2018 Nonperturbative Approach to Equation of State and Collective Modes of the QGP Shuai Y.F. Liu and Ralf Rapp Cyclotron Institute + Dept. of Physics.
Lecture 2 Evolution and resummation
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Peng Wang Sichuan University
Notes on non-minimally derivative coupling
Adnan Bashir, UMSNH, Mexico
in SU(N) Gauge Field Theory
Adnan Bashir, UMSNH, Mexico
The Operator Product Expansion Beyond Perturbation Theory in QCD
Exact vector channel sum rules at finite temperature
IR fixed points and conformal window in SU(3) gauge Theories
QCD at very high density
Calculation of Pure Annihilation Type B Decay in PQCD Approach
QED and QCD, an introduction.
第十八届全国中高能核物理大会 Fluctuations and correlations of conserved charges in the flavor low energy effective model Rui Wen
Presentation transcript:

Hamiltonian Flow in Coulomb Gauge Yang-Mills theory H. Reinhardt Tübingen Collaborators: M. Leder, J. Pawlowski, A.Weber

Hamiltonian approach to YMT canonical quantization

Hamiltonian approach to YMT canonical quantization Coulomb gauge

Hamiltonian approach to YMT canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of

Hamiltonian approach to YMT canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations

Hamiltonian approach to YMT canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations infinite tower of flow eqs. for static propagators indirect determination of truncation of flow equations Ansätze for propagators initial condition to the flow (UV-regime)

Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004) gluon propagator determined from variational kernel

D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) Numerical results D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) gluon energy

Static gluon propagator in D=3+1 G. Burgio, M.Quandt , H.R., PRL102(2009)

W. Schleifenbaum, M. Leder, H.R. PRD73(2006) running coupling W. Schleifenbaum, M. Leder, H.R. PRD73(2006)

Coulomb potential

D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) ghost formfactor gost propagator ghost form factor D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) Input:

ghost formfactor: lattice see talk by G. Burgio

D. Campagnari, H. R., A. Weber, Phys. Rev D(2009) Perturbation theory D. Campagnari, H. R., A. Weber, Phys. Rev D(2009) Rayleigh-Schrödinger PT vacuum (QED) ß-function

The color dielectric function of the QCD vacuum ghost propagator dielectric „constant“ H.Reinhardt,PRL101 (2008)

The color dielectric function of the QCD vacuum ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum H.Reinhardt,PRL101 (2008)

The color dielectric function of the QCD vacuum ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum QED: screening H.Reinhardt,PRL101 (2008)

no free color charges in the vacuum: confinement

Confinement scenarios Gribov-Zwanziger dual superconductor horizon condition perfect dia-electricum

Can we avoid the input of the horizon condition ? Yes we can : RG-flow equation: indirect test of our ansatz for the wave functional M. Leder, J. Pawlowski, H. R, A. Weber

Renormalization group flow equation

Renormalization group flow equation Wetterich

Effective action: 1PI-vertices

RG-flow equation Wetterich 1993

RG-flow equation propagator flow

Hamiltonian flow

Hamiltonian flow in Coulomb gauge YMT

RG- flow equation

Hamiltonian FRG flow equation no ansatz for indirect specification of truncation of flow equation form of the propagators&vertices assumed intial condition to propagators&vertices in the UV

Truncation of FRG flow equation gluon propagator ghost propagator ghost-gluon-vertex no tadpoles ghost dominance no gluon loops

RG- flow equation ghost dominance

Integrating the RG-flow equation

ghost form factor d(p)

gluon energy

FRG & DSE Replacement in loop integrals of FRG: FRG flow eq. DSE-variational approach

RG-Flow vs DSE: ghost form factor

RG-Flow vs DSE: gluon energy

RG-Flow vs DSE: running coupling

IR- exponents satisfy sum rule smaller than for DSE

Summary & Conclusion Hamiltonian FRG-flow equation of YMT in Coulomb gauge : Input: ghost dominance scaling of ghost in the IR output : horizon condition YM vacuum=perfect dual superconductor IR-exponents satisfy sum rule smaller than in variational approach outlook: Coulomb form factor inclusion of quarks

Summary & Conclusion Hamiltonian approach to YMT in Coulomb gauge variational solution of the YM Schrödinger eq. , input: gluon confinement quark confinement satisfactory agreement with lattice data Hamiltonian FRG-flow equation: horizon condition IR-exponents smaller than in variational approach dielectric function of the YM vacuum YM vacuum=perfect dual superconductor

Thanks for your attention

non-perturbative approaches to continuum Yang-Mills theory DSE FRG flow equations Variational Hamiltonian approch

Hamiltonian Flow in Coulomb Gauge Yang-Mills theory Introduction Hamilton approach to YMT FRG flow equation Numerical results Conclusions

Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004) gluon propagator determined from variational kernel