Linear complexity for FE forward modeling: Transfer matrices, fast FE solver methods and a first sensitivity study Carsten Wolters Tensor weiter erlaeutern.

Slides:



Advertisements
Similar presentations
A Discrete Adjoint-Based Approach for Optimization Problems on 3D Unstructured Meshes Dimitri J. Mavriplis Department of Mechanical Engineering University.
Advertisements

Chapter 1 Electromagnetic Fields
Computer Science & Engineering Department University of California, San Diego SPICE Diego A Transistor Level Full System Simulator Chung-Kuan Cheng May.
MULTISCALE COMPUTATIONAL METHODS Achi Brandt The Weizmann Institute of Science UCLA
Geometric (Classical) MultiGrid. Hierarchy of graphs Apply grids in all scales: 2x2, 4x4, …, n 1/2 xn 1/2 Coarsening Interpolate and relax Solve the large.
Limitation of Pulse Basis/Delta Testing Discretization: TE-Wave EFIE difficulties lie in the behavior of fields produced by the pulse expansion functions.
Modern iterative methods For basic iterative methods, converge linearly Modern iterative methods, converge faster –Krylov subspace method Steepest descent.
Magnetostatics Magnetostatics is the branch of electromagnetics dealing with the effects of electric charges in steady motion (i.e, steady current or DC).
Multi-Cluster, Mixed-Mode Computational Modeling of Human Head Conductivity Adnan Salman 1, Sergei Turovets 1, Allen Malony 1, and Vasily Volkov 1 NeuroInformatics.
An Algebraic Multigrid Solver for Analytical Placement With Layout Based Clustering Hongyu Chen, Chung-Kuan Cheng, Andrew B. Kahng, Bo Yao, Zhengyong Zhu.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
Electromagnetic NDT Veera Sundararaghavan. Research at IIT-madras 1.Axisymmetric Vector Potential based Finite Element Model for Conventional,Remote field.
Parallel Performance of Hierarchical Multipole Algorithms for Inductance Extraction Ananth Grama, Purdue University Vivek Sarin, Texas A&M University Hemant.
1 A Domain Decomposition Analysis of a Nonlinear Magnetostatic Problem with 100 Million Degrees of Freedom H.KANAYAMA *, M.Ogino *, S.Sugimoto ** and J.Zhao.
SOFOMORE: Combined EEG SOurce and FOrward MOdel REconstruction Carsten Stahlhut, Morten Mørup, Ole Winther, Lars Kai Hansen Technical University of Denmark.
1 Strong and Weak Formulations of Electromagnetic Problems Patrick Dular, University of Liège - FNRS, Belgium.
Finite element modeling of the electric field for geophysical application Trofimuk Institute of Petroleum Geology and Geophysics SB RAS Shtabel Nadezhda,
Source localization MfD 2010, 17th Feb 2010
Wim Schoenmaker ©magwel2005 Electromagnetic Modeling of Back-End Structures on Semiconductors Wim Schoenmaker.
Fast Low-Frequency Impedance Extraction using a Volumetric 3D Integral Formulation A.MAFFUCCI, A. TAMBURRINO, S. VENTRE, F. VILLONE EURATOM/ENEA/CREATE.
Fast Thermal Analysis on GPU for 3D-ICs with Integrated Microchannel Cooling Zhuo Fen and Peng Li Department of Electrical and Computer Engineering, {Michigan.
Computational electrodynamics in geophysical applications Epov M. I., Shurina E.P., Arhipov D.A., Mikhaylova E.I., Kutisheva A. Yu., Shtabel N.V.
A comparison between a direct and a multigrid sparse linear solvers for highly heterogeneous flux computations A. Beaudoin, J.-R. De Dreuzy and J. Erhel.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Classical electrodynamics.
Hierarchical Bayesian Modeling (HBM) in EEG and MEG source analysis Carsten Wolters Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität.
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
Jia Wang Electrical and Computer Engineering Illinois Institute of Technology Chicago, Illinois, United States November, 2012 Deterministic Random Walk.
A 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem V. Volkov 1, A. Zherdetsky 1, S. Turovets.
The Finite Element Method A Practical Course
Special Solution Strategies inside a Spectral Element Ocean Model Mohamed Iskandarani Rutgers University and Miami University Craig C. Douglas University.
Linear optical properties of dielectrics
Case Study in Computational Science & Engineering - Lecture 5 1 Iterative Solution of Linear Systems Jacobi Method while not converged do { }
Strategies for Direct Volume Rendering of Diffusion Tensor Fields Gordon Kindlmann, David Weinstein, and David Hart Presented by Chris Kuck.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Beamformer dimensionality ScalarVector Features1 optimal source orientation selected per location. Wrong orientation choice may lead to missed sources.
MULTISCALE COMPUTATIONAL METHODS Achi Brandt The Weizmann Institute of Science UCLA
On the Performance of PC Clusters in Solving Partial Differential Equations Xing Cai Åsmund Ødegård Department of Informatics University of Oslo Norway.
Brain (Tech) NCRR Overview Magnetic Leadfields and Superquadric Glyphs.
Fast BEM Algorithms for 3D Interconnect Capacitance and Resistance Extraction Wenjian Yu EDA Lab, Dept. Computer Science & Technology, Tsinghua University.
A Parallel Hierarchical Solver for the Poisson Equation Seung Lee Deparment of Mechanical Engineering
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 28.
Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation.
High Performance Computing Seminar II Parallel mesh partitioning with ParMETIS Parallel iterative solvers with Hypre M.Sc. Caroline Mendonça Costa.
Electromagnetic Theory
Finite Element Modelling of the dipole source in EEG
Chapter 1 Electromagnetic Fields
Xing Cai University of Oslo
Elementary Linear Algebra
Lecture 19 MA471 Fall 2003.
Finite Element Method To be added later 9/18/2018 ELEN 689.
Introduction to Scientific Computing II
Deflated Conjugate Gradient Method
Deflated Conjugate Gradient Method
GPU Implementations for Finite Element Methods
Adnan Salman1 , Sergei Turovets1, Allen Malony1, and Vasily Volkov
A robust preconditioner for the conjugate gradient method
Matrix Methods Summary
GENERAL VIEW OF KRATOS MULTIPHYSICS
Supported by the National Science Foundation.
Introduction to Scientific Computing II
Basic Electromagnetics
Numerical Linear Algebra
Introduction to Scientific Computing II
A Software Framework for Easy Parallelization of PDE Solvers
Comparison of CFEM and DG methods
Parallelizing Unstructured FEM Computation
Ph.D. Thesis Numerical Solution of PDEs and Their Object-oriented Parallel Implementations Xing Cai October 26, 1998.
Oswald Knoth, Detlev Hinneburg
1st Week Seminar Sunryul Kim Antennas & RF Devices Lab.
Presentation transcript:

Linear complexity for FE forward modeling: Transfer matrices, fast FE solver methods and a first sensitivity study Carsten Wolters Tensor weiter erlaeutern Zeitableitung Programmlaenge, 1Mill. WM-Rendering->5000 nodes 1:10 raus und anfangs erwaehnen Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität Münster Münster, January 24, 2017

Outline Linear complexity for FEM forward modeling: Transfer matrices Fast FE solver methods Modeling and influence of white matter anisotropy

Outline Linear complexity for FEM forward modeling: Transfer matrices Fast FE solver methods Modeling and influence of white matter anisotropy

Link to own work for transfer matrices: [Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] Link to own work for transfer matrices: PEBBLES: Parallel and Element Based grey Box Linear Equation Solver

[Weinstein, Zhukov & Johnson, Annals Biomed. Eng.,2000] [Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] EEG transfer matrix D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

[Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] MEG transfer matrix D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

[Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] MEG transfer matrix D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

[Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] MEG transfer matrix D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

Computing the transfer matrices [Wolters, Grasedyck & Hackbusch, Inverse Problems, 2004] Computing the transfer matrices der Tensor muss erklärt werden!!

Outline Linear complexity for FEM forward modeling: Transfer matrices Fast FE solver methods Modeling and influence of white matter anisotropy

Link to this work: [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Link to this work: PEBBLES: Parallel and Element Based grey Box Linear Equation Solver

FEM solver aspects [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] FEM solver aspects D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

Preconditioned Conjugate Gradient Method [Hackbusch, Springer, 1994] Preconditioned Conjugate Gradient Method PCG accuracy

Iterative solver for FE-equation system [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Iterative solver for FE-equation system FE discretization, meshsize: with condition number der Tensor muss erklärt werden!! Example:

[Wolters, Reitzinger, Basermann, Burkhardt, Hartmann, Kruggel & Anwander, Proceedings of BIOMAG Helsinki, 2000] Link to this work: PEBBLES: Parallel and Element Based grey Box Linear Equation Solver

Iterative solver for FE-equation system [Wolters, Reitzinger, Basermann, Burkhardt, Hartmann, Kruggel & Anwander, Proceedings of BIOMAG Helsinki, 2000] Iterative solver for FE-equation system der Tensor muss erklärt werden!!

Iterative solver for FE-equation system [Wolters, Reitzinger, Basermann, Burkhardt, Hartmann, Kruggel & Anwander, Proceedings of BIOMAG Helsinki, 2000] Iterative solver for FE-equation system FE discretization, meshsize: with condition number Convergence of the CG solver: c wird asymptotische Konvergenzrate genannt, denn lim_{i->infty}(c^i\frac{2}{1+c^{2i}})^(1/i)=c Formel wird mit Hilfe der Chebyshev-Polynome bewiesen und ist nur eine obere Schranke, denn es wird ja \sigma_M=[a,b] gewaehlt, obwohl womoeglich \sigma_M=[a,a´]\cup[b´,b] moeglich waere. Example: Strategy: Preconditioning!

Jacobi preconditioning [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Jacobi preconditioning

Incomplete Cholesky preconditioning [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Incomplete Cholesky preconditioning

Incomplete Cholesky preconditioning [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Incomplete Cholesky preconditioning

MultiGrid (MG) preconditioning [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning Principle of MG Smoother for high-frequency error components is effective

MultiGrid (MG) preconditioning [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning Principle of MG Smoother for low-frequency error components not effective

MultiGrid (MG) preconditioning [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning Principle of the MG Smoother for high-frequency error components Coarse grid correction for low-frequency error components

MultiGrid (MG) preconditioning [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] MultiGrid (MG) preconditioning

Geometric Multigrid Geometric MG (GMG) Complexity: O(N) [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Geometric Multigrid Complexity: O(N) Convergence rate: h-independent high Geometric MG (GMG) Problem-specific smoother for high-frequency error components Coarse grid correction for low-frequency error components Problems in our application Choice of the smoother is difficult (Inhomogeneities/Anisotropies) Generation of the coarse grids difficult Strategy: Algebraic MG (AMG)!

Algebraic Multigrid Principle of the AMG: [Ruge and Stüben, SIAM, 1986; Stüben, GMD, Tech.Report, 1999] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Algebraic Multigrid Principle of the AMG: Smoother is given (Gauss-Seidel) Coarse grids and interpolation matrices are constructed from the entries of K Diagonal entries <-> nodes Nondiagonal entries <-> edges Only one high resolution FE mesh! Problems: AMG-interpolation non-optimal: Some few error components are not well reduced, i.e., some few eigenvalues of the AMG iteration matrix are close to 1 Strategy: AMG-CG!

Preconditioned Conjugate Gradient Method [Hackbusch, Springer, 1994] [Wolters, Vorlesungsskriptum, Chapter 7.2] [Wolters, Kuhn, Anwander & Reitzinger, Comp. Vis. Sci.., 2002] [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Preconditioned Conjugate Gradient Method PCG accuracy

[Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Solver: “Maximal relative error over all eccentricities” versus “solution time” highlighted Nodes: 360,056 Elements: 2,165,281

[Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] FE models tuned for subtraction (group 1) and for the direct potential methods (group 2)

Comparison of different preconditioners [Lew, Wolters, Dierkes, Roer & MacLeod, Appl.Num.Math., 2009] Comparison of different preconditioners

[Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004] Link to this work: PEBBLES: Parallel and Element Based grey Box Linear Equation Solver

Efficiency of the fast FE transfer matrix approaches [Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004] Efficiency of the fast FE transfer matrix approaches Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements der Tensor muss erklärt werden!!

Efficiency of the fast FE transfer matrix approaches [Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004] Efficiency of the fast FE transfer matrix approaches Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements Influence space: brain surface mesh, 2mm resolution, 9555 nodes der Tensor muss erklärt werden!!

Efficiency of the fast FE transfer matrix approaches [Wolters, Grasedyck, Anwander & Hackbusch, Biomag, 2004] Efficiency of the fast FE transfer matrix approaches Head model: Tetrahedral FE, 147,287 nodes, 892,119 elements Influence space: brain surface mesh, 2mm resolution, 9555 nodes Number of FE forward solutions: EEG, 71 electrodes: 9555 * 3 = 28665 MEG, 147 channels: 9555 * 2 = 19110 (tangential constraint) FE approach and dipole model: Venant der Tensor muss erklärt werden!!

Parallel AMG-CG on distributed memory computers [Wolters, Kuhn, Anwander & Reitzinger, Comp.Vis.Sci, 2002] Parallel AMG-CG on distributed memory computers ``Element-wise’’ partitioning into subdomains Irregular k way partitioning scheme for irregular graphs Parallel MultiRHS-AMG-CG: Communication is only necessary for: Smoother (-Jacobi within interface nodes, Gauss-Seidel between blocks and for inner nodes) distribution of coarse grid solution inner products within PCG method

Results for parallel solver methods [Wolters, Kuhn, Anwander & Reitzinger, Comp.Vis.Sci, 2002] Results for parallel solver methods SGI Origin2000, each processor 195MHz, MIPS 10000 Distribution of memory About a linear speedup for moderate processor number Jacobi-CG on 1 proc <-> AMG-CG on 8 procs: Speedup factor of about 80 (10 MG, 8 parallel.) Anisotropy and inhomogeneity does not change performance results Stable preconditioning for moderate processor numbers Solver time comparison: Unknowns:147.287

Outline Linear complexity for FEM forward modeling: Transfer matrices Fast FE solver methods Modeling and influence of white matter anisotropy

[Wolters, Vorlesungsskriptum, Chapter 5.4.2] [Sen et al., Geophysics, 1981] Differential effective medium approach (EMA) for electrical conductivity : Conductivity tensor eigenvalue : Conductivity of the intracellular medium : Conductivity of the extracellular medium : Electromagnetic depolarization factor : Porosity of the medium

Differential effective medium approach (EMA) for water diffusion [Wolters, Vorlesungsskriptum, Chapter 5.4.2] [Latour et al., PNAS, 1994] Differential effective medium approach (EMA) for water diffusion D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

Differential effective medium approach (EMA) for water diffusion [Wolters, Vorlesungsskriptum, Chapter 5.4.2] [Tuch et al., Ann NYAS, 1999] Differential effective medium approach (EMA) for water diffusion D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

Differential effective medium approach (EMA) for water diffusion [Wolters, Vorlesungsskriptum, Chapter 5.4.2] [Tuch et al., PNAS, 2001] Differential effective medium approach (EMA) for water diffusion D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

[Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] Link to this work: PEBBLES: Parallel and Element Based grey Box Linear Equation Solver

5 compartment anisotropic head modeling [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] 5 compartment anisotropic head modeling Nodes: 147,287 Elements: 892,119 5 compartment tetrahedral FE model D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

5 compartment anisotropic head modeling [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] Material labeling: Normed colored tensor ellipsoids Tensor ellipsoids in the barycenter of tetrahedra elements

5 compartment tetrahedral FE head model [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] 5 compartment tetrahedral FE head model Mainly radially oriented thalamic dipole D: electric displacement rho: electric free charge density E: electric field B: magnetic induction mu: magnetic permeability (vacuum) j: electric current density Phi: electric scalar potential Psi: magnetic flux A: magnetic vector potential divA=0: Coulomb’s gauge conductor loop

How volume currents are affected by tissue compartments [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] How volume currents are affected by tissue compartments highlighted 46 46

Impact of white matter anisotropy on volume currents [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] Impact of white matter anisotropy on volume currents highlighted Isotropic white matter Anisotropic white matter 47 47

Parallelity of return current and main conductivity tensor eigenvector [Wolters, Anwander, Tricoche, Weinstein, Koch & MacLeod, NeuroImage, 2006] Parallelity of return current and main conductivity tensor eigenvector highlighted Isotropic WM Anisotropic WM

Thank you for your attention!