Chapter 10: Phase Transformations ISSUES TO ADDRESS... • Transforming one phase into another takes time. Fe g (Austenite) Eutectoid transformation C FCC Fe3C (cementite) a (ferrite) + (BCC)
Phase Transformation
Nucleation and Growth • Reaction rate is a result of nucleation and growth of crystals. % Pearlite 50 100 Nucleation regime Growth log (time) t 0.5 Nucleation rate increases with T Growth rate increases with T • Examples: Eutectoid reaction T just below TE Nucleation rate low Growth rate high g pearlite colony T moderately below TE g Nucleation rate med . Growth rate med. Nucleation rate high T way below TE g Growth rate low
Nucleation nuclei (seeds) act as template to grow crystals Nucleation driving force increases as increase T Supercooling (or undercooling) superheating Small supercooling few nuclei, large crystals Large supercooling rapid nucleation, many nuclei, small crystals In Chapter 9 we looked at the equilibrium phase diagram . This indicated phase structure if we wait long enough. But due to slow diffusion may not reach equilibrium We need to consider time- kinetics - energy of phase boundaries may be high. – also nucleation Transformation rate How fast do the phase transformations occur? First need nuclei (seeds) to form for the rest of the material to crystallize
Fe-Fe3C phase diagram
Solidification: Nucleation Processes Homogeneous nucleation nuclei form in the bulk of liquid metal requires supercooling (typically 80-300°C max) Heterogeneous nucleation much easier since stable “nucleus” is already present Could be wall of mold or impurities in the liquid phase allows solidification with only 0.1-10ºC supercooling
Homogeneous Nucleation & Energy Effects Surface Free Energy- destabilizes the nuclei (energy for makinmg surface) ,g = surface tension HS = latent heat of solidification DGT = Total Free Energy = DGS + DGV Volume (Bulk) Free Energy – stabilizes the nuclei (releases energy) r* = critical nucleus: nuclei < r* shrink; nuclei>r* grow
Homogenous and Heterogeneous Nucleation
Rate of Phase Transformation Fixed T: Isothermal Completely growth maximum rate reached – now amount unconverted decreases so rate slower Fraction transformed, y rate increases as surface area increases & nuclei grow log t S.A. = surface area By convention r = 1 / t0.5
Isothermal Transformation Diagrams • Fe-C system, Co = 0.76 wt% C • Transformation at T = 675°C. 675°C (DT smaller) 50 y (% pearlite) 600°C (DT larger) 650°C 100 100 T = 675°C y, % transformed 50 2 4 1 10 10 time (s) 400 500 600 700 1 10 2 3 4 5 0%pearlite 100% 50% Austenite (stable) TE (727C) Austenite (unstable) Pearlite T(°C) time (s) isothermal transformation at 675°C Course pearlite formed at higher T - softer Fine pearlite formed at lower T - harder
Rate of Phase Transformations 135C 119C 113C 102C 88C 43C 1 10 102 104 % Recrystallization of Rolled Copper Percent recrystallization is function of time and temperature
Transformations & Undercooling • Eutectoid transformation (Fe-C System): g Þ a + Fe3C 0.76 wt% C 0.022 wt% C 6.7 wt% C • Can make it occur at: ...727ºC (cool it slowly) ...below 727ºC (“undercool” it!) Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) Co , wt%C 1148°C T(°C) ferrite 727°C Eutectoid: Equil. Cooling: Ttransf. = 727ºC DT Undercooling by DTtransf. < 727C 0.76 0.022
Eutectoid Transformation Rate • Growth of pearlite from austenite: cementite (Fe3C) Ferrite (a) g a pearlite growth direction Diffusive flow of C needed a g g a a • Higher T give higher diffusivity
Effect of Cooling History in Fe-C System • Eutectoid composition, Co = 0.76 wt% C • Begin at T > 727°C • Rapidly cool to 625°C and hold isothermally. 400 500 600 700 0%pearlite 100% 50% Austenite (stable) TE (727C) Austenite (unstable) Pearlite T(°C) 1 10 2 3 4 5 time (s) g g
Transformations with Proeutectoid Materials CO = 1.13 wt% C TE (727°C) T(°C) time (s) A + C P 1 10 102 103 104 500 700 900 600 800 Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) Co , wt%C T(°C) 727°C DT 0.76 0.022 1.13 Hypereutectoid composition – proeutectoid cementite
T-T-T of Eutectoid Composition A – Austenite P – Pearlite B – Bainite M – Martensite C – Cementite
Non-Equilibrium Transformation Products: Fe-C • Bainite: --a lathes (strips) with long rods of Fe3C --diffusion controlled. • Isothermal Transf. Diagram Fe3C (cementite) 10 3 5 time (s) -1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% pearlite/bainite boundary A a (ferrite) 100% pearlite 100% bainite 5 mm T-T-T Diagram Time – Temperature – Transformation
Spheroidite: Fe-C System -- a grains with spherical Fe3C -- diffusion dependent. -- heat bainite or pearlite for long times near TE 60 m a (ferrite) (cementite) Fe3C
Martensite: Fe-C System --g(FCC) to Martensite (BCT) Martensite needles Austenite 60 m x potential C atom sites Fe atom sites • Isothermal Transf. Diagram 10 3 5 time (s) -1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% A M + A 90% • g to M transformation -- is rapid! -- % transformation depends on T only.
Martensite Formation (FCC) P (BCC) + Fe3C slow cooling quench M (BCT) tempering M = martensite is body centered tetragonal (BCT) Diffusionless transformation BCT if C > 0.15 wt% BCT few slip planes hard, brittle
Phase Transformations of Alloys Effect of adding other elements Change transition temp. Cr, Ni, Mo, Si, Mn retard + Fe3C transformation Alloy steel (type 4340)
Continuous Cooling Curve Actual processes involves cooling – not isothermal Can’t cool at infinite speed
Dynamic Phase Transformations On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures: 42% proeutectoid ferrite and 58% coarse pearlite 50% fine pearlite and 50% bainite 100% martensite
Example Problem for Co = 0.45 wt% 42% proeutectoid ferrite and 58% coarse pearlite first make ferrite then pearlite course pearlite higher T A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) T (°C)
Example Problem for Co = 0.45 wt% 50% fine pearlite and 50% bainite first make pearlite then bainite fine pearlite lower T A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) T (°C)
Example Problem for Co = 0.45 wt% 100 % martensite – quench = rapid cool A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) c) T (°C)
Mechanical Prop: Fe-C System (1) • Effect of wt% C Co < 0.76 wt% C Hypoeutectoid Pearlite (med) ferrite (soft) Co > 0.76 wt% C Hypereutectoid Pearlite (med) C ementite (hard) 300 500 700 900 1100 YS(MPa) TS(MPa) wt% C 0.5 1 hardness 0.76 Hypo Hyper wt% C 0.5 1 50 100 %EL Impact energy (Izod, ft-lb) 40 80 0.76 Hypo Hyper • More wt% C: TS and YS increase , %EL decreases.
Mechanical Prop: Fe-C System (2) • Fine vs coarse pearlite vs spheroidite 80 160 240 320 wt%C 0.5 1 Brinell hardness fine pearlite coarse spheroidite Hypo Hyper 30 60 90 wt%C Ductility (%RA) fine pearlite coarse spheroidite Hypo Hyper 0.5 1 • Hardness: fine > coarse > spheroidite fine < coarse < spheroidite • %RA:
Mechanical Prop: Fe-C System (3) • Fine Pearlite vs Martensite: 200 wt% C 0.5 1 400 600 Brinell hardness martensite fine pearlite Hypo Hyper • Hardness: Fine Pearlite << Martensite. • Hardness: Pearlite < Bainite.
Tempering Martensite • • • reduces brittleness of martensite, • reduces internal stress caused by quenching. YS(MPa) TS(MPa) 800 1000 1200 1400 1600 1800 30 40 50 60 200 400 600 Tempering T (°C) %RA TS YS 9 mm produces extremely small Fe3C particles surrounded by a. • • decreases TS, YS but increases %RA
Summary: Processing Options Austenite (g) Bainite (a + Fe3C plates/needles) Pearlite (a + Fe3C layers + a proeutectoid phase) Martensite (BCT phase diffusionless transformation) Tempered (a + very fine Fe3C particles) slow cool moderate rapid quench reheat Strength Ductility T Martensite bainite fine pearlite coarse pearlite spheroidite General Trends