Functional Poperties overview.

Slides:



Advertisements
Similar presentations
Food Properties Lesson Objectives To understand the different functions of food. Know the different words used to describe food functions.
Advertisements

Properties and function of Eggs and Cooking methods
© 2006, Pearson Education, Upper Saddle River, NJ All Rights Reserved. American Culinary Federation: Culinary Fundamentals. Unit 4: Food Science.
© Food – a fact of life 2009 Functional properties overview Foundation DRAFT ONLY.
Functional properties of food Food designers need to understand the properties of foods when they are designing new dishes, to make sure they match the.
CAKES COOKIES PIES YEAST BREADS QUICK BREADS
The Function of Ingredients in Bakery Products Year 8 Food Technology – Mrs McQuillan.
© Food – a fact of life 2009 Functions of Colloidal Systems in Food Products Extension DRAFT ONLY.
© Food – a fact of life 2009 Fat and its functional properties in food products Extension/Foundation DRAFT ONLY.
Fruit and vegetables Bread, cereals and potatoes Milk and dairy products Fatty and sugary foods Meat, fish and other proteins.
Carbohydrate and its functional properties in food products
Protein and its functional properties in food products
Sources of Fats and Oils Fats and oils are produced from three different sources Animal such as pigs, cows and sheep. Vegetables such as wheat, barley,
Types of Pastry.
Baking & Dough In your culinary journal: 1.What do you feel is something that is very important to know/remember when baking? 2.What are some types of.
INGREDIENTS AND TECHNIQUES
Bakeshop Production BASIC PRINCIPLES AND INGREDIENTS.
Functional properties of food. Year 11: Objectives What Understand functional properties of foods How Research into functional properties and their uses.
Food Properties Lesson Objectives To understand the different functions of food. Know the different words used to describe food functions.
Pies and Pastry.  Pastry- dough used to make pie crust, tarts, and turnovers  Pastry is used in desserts, but main dishes as well Pot pie  Can add.
Functions of Ingredients
Bindingbulkinglactose enrobing & coating enrichingfinishingglazingpliability.
Food Biotechnology Dr. Tarek Elbashiti Food Biochemistry 3
Baking Ingredients Functions.
Baking Ingredients Functions. Wheat Varieties 4 Hard wheats contain greater quantities of the proteins glutenin and gliadin, and are used to produce strong.
Cakes making methods Starter: What are the ingredients that make up most cakes? Tip you should remember this from year 8 if not look around the room to.
© Food – a fact of life 2009 Carbohydrate and its functional and working properties in food products Extension Many foods contain some carbohydrate but.
CAKES MIXING AND BAKING Producing Cakes needs much precision than producing breads. Cakes are high in fat and sugar, creates structure that supports the.
BAKING BASICS: INGREDIENTS Teresa Chen Computer Studies A Period 7.
What do you know / remember ?
Functions of colloidal systems in food products
Food and Fitness Mrs. Swope
Functional and chemical properties
Functional and chemical properties of fats
Functions of ingredients
BAKING BASICS FOD 1020.
FATS AND OILS.
Uses of Fats and oils.
Fat and its functional properties in food products.
Food Properties Lesson Objectives
Functional and chemical properties of protein
Carbohydrates - Sugar.
Fats List 3 reasons why fats are important Provides energy
Year 9 Food Function Explanation Ingredients Browning
Protein and its functional properties in food products.
Food Types and Properties
The functions and properties of protein in eggs (pages )
Functions of Colloidal Systems in Food Products
The functions and properties of eggs
CAKES COOKIES PIES YEAST BREADS QUICK BREADS
Food Functions Jan 2012.
Food functions.
CAKES COOKIES PIES YEAST BREADS QUICK BREADS
Discovering Foods Chapter 42 Page – 340
Permanent change in protein from a liquid into a thick mass
Ingredients for baking
Pastry making: Shortcrust Pastry Product: Quiche
Functions of Colloidal Systems in Food Products
Functions of Colloidal Systems in Food Products
Working characteristics and functional properties
Function of ingredients
Section C: Cooking and food preparation
Pastry Choux Short/Sweet Crust And that’s it! Flaky/Puff.
Functions of Ingredients
CAKE.
4.4 b The performance Characteristics of eggs (p 115)
Presentation transcript:

Functional Poperties overview

Learning objectives To understand the functional properties of carbohydrate, protein and fats in food.

Introduction Ingredients have a range of different properties. Sometimes these are called functions. The main nutrient provided by an ingredient gives it a range of properties during cooking. Carbohydrate, protein and fat all have a range of different properties.

Carbohydrate The term carbohydrate covers a wide range of natural compounds, including: starch; sugar, fibre.

Carbohydrate in food Many foods contain some carbohydrate, but the amounts of sugar, starch and fibre differ. Sugars are naturally present in foods such as milk , fruits, vegetables and honey. In the UK, sugar beet and sugar cane are the most common sources of sugar. Honey, treacle and golden syrup are also popular. Starch is present in foods such as potatoes, bread, rice and pasta.

Carbohydrate in food Fibre is present in whole grains, fruits and vegetables, especially the skin covering of seeds. It is a mixture of substances (mainly complex carbohydrates) which cannot be digested in the small intestine. There are two types of fibre: Soluble fibre - found in fruit, vegetables, pulses and oats. Insoluble fibre - found in cereal such as bread and pasta.

Carbohydrate Carbohydrate performs different functions in food products. They: help cause the colour change of bread, toast and bakery products; contribute to the chewiness, colour and sweet flavour of caramel: thicken products such as sauces and custards.

Dextrinisation Foods which are baked, grilled or roasted undergo colour, odour and flavour changes. This process is called dextrinisation. Dextrinisation contributes to the colour and flavour of many foods such as toast, bread and croissants. This is known as non-enzymic browning (Maillard reaction).

Caramelisation When sucrose (sugar) is heated above its melting point it undergoes a physical change to produce caramel. This happens more readily without water, however syrups will caramelise with rapid heating. This process is used extensively in the production of confectionary.

Gelatinisation When starch is mixed with liquid and heated, the starch granules swell and eventually rupture, absorbing liquid which thickens the mixture, e.g. a white sauce. On cooling, if enough starch is used, a gel forms. This process is used to make blancmange.

Other Characteristics Flavouring Sugar, e.g. sucrose, may be used to flavour many products such as drinks, cakes, tomato sauce and confectionary. It supplies sweetness and mouth feel. Preserving Sugar in high concentrations prevents the growth of micro-organisms. It is used extensively in the production of jam, marmalade and some canned fruit. Jelling Some fruits, such as apples and blackcurrants, are rich sources of pectin. Pectin is used as a jelling agent when making jam.

Protein Protein performs different functions in food products. They: aerate foods, e.g. whisking egg whites; thicken sauces, e.g. egg custard; bind ingredients together, e.g. fish cakes; form structures, e.g. gluten development in bread; gel, e.g. lime jelly.

Denaturation Denaturation is the change in structure of protein molecules. Factors which contribute to denaturation are heat, salts, pH and mechanical action. Denaturation is a partially reversible change. For example, when an egg white is whisked it incorporates air to form a foam. If the foam is left to stand, it will collapse back to form liquid egg white.

Coagulation Coagulation follows denaturation. For example, when egg white is cooked it changes colour and becomes firmer or sets. This change is irreversible. Other applications of coagulation are: • cheese and yogurt making; • thickening of sauces with beaten egg; • binding ingredients together, e.g. fish, cakes; • providing a coating for products, e.g. scotch eggs.

Gluten Gluten is a composite of proteins joined with starch, it is acquired by washing wheat flour to dissolve the starch, leaving the gluten. Gluten is strong, elastic and forms a 3D network in dough. When making bread, kneading helps to develop the gluten and make the dough more elastic. Gluten helps give structure to bread and keeps in the gases that expand during cooking.

Gelation Gelatine is a protein which is from collagen, present in connective tissue in meat. When it is mixed with warm water the gelatine proteins unwind. On cooling a gel is formed, trapping the liquid, e.g. jelly. Gelation is reversible.

Fats Fats performs different functions in food products. They help to: add ‘shortness’ or ‘flakiness’ to foods, e.g. shortbread, pastry; provide a range of textures and cooking mediums; glaze foods, e.g. butter on carrots; aerate mixtures, e.g. a creamed cake mix; add a range of flavours.

Fats Fats have a range of properties, which are useful to exploit during preparing and cooking dishes. Shortening Shortcrust pastry, biscuits and shortbread rely on fat to give them their characteristic crumbly texture. The fats coat the flour particles and prevents them from absorbing water. This reduces the formation of gluten development, which would cause the dough to become elastic. Fats such as pure vegetable fats or lard are suitable for shortening because of their low water content.

Plasticity Fats do not melt at fixed temperatures, but over a range. This property is called plasticity. It gives all fats unique character. This is why some fats are solid or liquid at room temperature, e.g. olive oil and lard. Some products are formulated with fats with lower melting points so they can spread from the fridge, e.g. margarine, or melt on the tongue, e.g. chocolate. Other fats have a higher melting point and are used for cooking, e.g. vegetable oil.

Aeration Products such as creamed cakes need air incorporated into the mixture in order to give a well risen texture. This is achieved by creaming a fat, such as butter or margarine, with caster sugar. Small bubbles of air are incorporated and form a stable foam.

Flakiness Flaky and puff pastry use fat to help separate layers of gluten and starch formed in the dough. The fat melts during cooking, leaving minute layers. The liquid present produces steam which evaporates and causes the layers to rise. The fat prevents the layers sticking together.

Other characteristics Retention of moisture Some fats can help retain a bakery product’s moisture and increase its shelf-life. They may also be used to baste food being cooked by dry heat, e.g. roast beef. Glaze Placed on hot vegetables, some fats give glossy appearance , e.g. butter or margarine. Fats also add shine to sauces.

Sensory attributes All fats and oils have unique flavours and odours. Some are more suited for particular purposes than others, e.g. olive oil for salad dressing (for flavour) and lard for pastry (due to its blandness). They can also contribute to the texture of the food, for example increasing succulence.

Review of the learning objectives To understand the functional properties of carbohydrate, protein and fats in food.