MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Laboratory and Possible Interstellar Detection of trans-Methyl Formate MATT T. MUCKLE, JUSTIN L. NEILL, DANIEL P. ZALESKI, and BROOKS H. PATE University.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Morgan McCabe and Steven Shipman New College of Florida
ROTATIONAL SPECTRA OF THE TRIFLUORO ETHANOL (TFE) -WATER CLUSTERS AND THE TFE DIMERS Javix Thomas and Yunjie Xu Department of Chemistry, University of.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
NOVEL APPLICATIONS OF A SHAPE-SENSITIVE DETECTOR 3: MODELING COMBUSTION CHEMISTRY THROUGH AN ELECTRIC DISCHARGE SOURCE Giana Storck Purdue University Department.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Studying Ozonolysis Reactions of 2-Butenes Using Cavity Ring-down Spectroscopy Liming Wang, Yingdi Liu, Mixtli Campos-Pineda, Chad Priest and Jingsong.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
International Symposium on Molecular Spectroscopy// June 26, 2015
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Vibrational Dynamics of Cyclic Acid Dimers: Trifluoroacetic Acid in Gas and Dilute Solutions Steven T. Shipman, Pam Douglass, Ellen L. Mierzejewski, Brian.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Development of a Fluorescence Excitation Spectroscopy System Michael McDonnell ▪ Stephen Drucker Department of Chemistry ▪ University of Wisconsin – Eau.
Javix Thomas, Wolfgang Jäger, Yunjie Xu Department of Chemistry, University of Alberta Edmonton, Alberta, Canada ISMS, Medical Sciences Building 274, TE11,
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Javix Thomas, Wenyuan Huang, Xunchen Liu, a Wolfgang Jäger, and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada a School.
Infrared Spectroscopy of Protonated Acetylacetone and Mixed Acetylacetone/Water Clusters Daniel T. Mauney, David C. McDonald II, Jonathon A. Maner and.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Daniel A. Obenchain, Jens-Uwe Grabow
Structure and tunneling dynamics of gauche-1,3-butadiene
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Methylstyrenes – Microwave Spectroscopy
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Observation of Trans-Ethanol and
Brooks H. Pate, Gordon G. Brown, and Justin L. Neill
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Presentation transcript:

MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN Department of Science and Mathematics Coker College Hartsville, SC TH05

Spectroscopists

Microwave Spectroscopists Frequency Narrow line-width Small Error Intensity Question: Can we use experimental intensities more effectively?

Conformational Energy Differences pre-Balle/Flygare1 pulsed jet cavity static cell w/ accurate relative intensities experimental energy differences often reported 1Balle, T.J., Flygare, W.H., Rev. Sci. Instrum. 1981, 52 (1), 33–45.

Conformational Energy Differences post Balle/Flygare1 pulsed jet (and rise of computing power) cooling in pulsed jet use of a cavity – relative intensities not accurate experimental relative intensities seldom reported 1Balle, T.J., Flygare, W.H., Rev. Sci. Instrum. 1981, 52 (1), 33–45.

Conformational Energy Differences Chirped-pulse microwave spectroscopy provides accurate relative intensities2 do relative intensities agree with energy differences between conformers? 2Gordon G. Brown, Brian C. Dian, Kevin O. Douglass, Scott M. Geyer, Steven T. Shipman, and Brooks H. Pate, Rev. Sci. Instrum. 79 (2008) 053103.

Hypothesis: Relative intensities are proportional to the conformer populations present before the expansion occurs (if we use He gas). We can use relative intensities to measure experimental relative energies between conformers.

Example: Ethylperoxyl radical intermediate in ethanol combustion two conformers, gauche and trans conformation energies determine most likely reaction path reaction kinetics

Relaxation of conformers in pulsed valves3 3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990) 3142-3150.

Relaxation of conformers in pulsed valves3 “When helium was used as the carrier gas all of the conformers showed little if any evidence of conformer relaxation… That is, the signal intensities were consistent with the equilibrium ratio of concentrations (Keq) predicted be the energy difference (ΔE) between conformers at T~298K, Keq = f exp(-ΔE/RT) ”1 f = ratio of numbers of equivalent forms (e.g. 2 gauche vs. 1 trans) 3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990) 3142-3150.

Relaxation of conformers in pulsed valves3 3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990) 3142-3150.

Coker College CP-FTMW Spectrometer4 4Miranda Smith, Brandon D. Short, April M. Ruthven, K. Michelle Thomas, Michael J. Hang, Gordon G. Brown,  J. Mol. Spectr., 307, (2015) 49-53.

Coker College CP-FTMW Spectrometer

Target Molecules propanal cis gauche 3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990) 3142-3150.

Intensity Ratio Predictions ethyl formate (gauche/trans) propanal (gauche/cis) predicted equilibrium ratio in valve (T = 296K) 1.63 0.43 predicted transition intensities in jet (1K) 0.86 0.52 Instrument response 2.0 1.5 overall predicted intensity ratio 2.8 0.34

Preliminary experiments: ethyl formate transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 set carrier frequency to ν – 200 MHz (10762 MHz and 13859 MHz) trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 21.36 3.84 0.18 2 23.26 3.62 0.16 3 28.84 2.41 0.08 4 23.64 3.22 0.14 5 21.48 3.94 6 21.63 3.77 0.17 7 25.85 4.75 8 27.13 2.42 0.09 9 25.92 3.57 10 26.21 3.38 0.13 avg 24.53 3.49 0.15 std dev 2.62 0.70 0.04

Preliminary experiments: ethyl formate trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 8.83 4.42 0.50 2 9.15 4.29 0.47 3 8.84 4 8.72 4.44 0.51 5 9.53 4.53 0.48 6 9.18 4.57 7 9.75 4.73 8 10.19 4.75 9 9.36 4.74 10 10.35 4.99 avg 9.39 4.59 0.49 std dev 0.57 0.21 0.02 Experiment 2: repeat Experiment 1 on different day transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 Expt. 2 ratio = 0.49 set carrier frequency to ν – 200 MHz (10762 MHz and 13859 MHz)

Preliminary experiments: ethyl formate repeat Experiment 2 on same day with different carrier frequencies transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 Expt. 2 ratio = 0.49 Expt. 3 ratio = 0.79 set carrier frequency to ν – 300 MHz (10662 MHz and 13759 MHz) trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 8.16 6.47 0.79 2 8.04 6.30 0.78 3 7.65 6.76 0.88 4 8.42 6.31 0.75 5 8.20 6.52 6 7.75 6.29 0.81 7 8.66 6.22 0.72 8 7.94 6.51 0.82 9 8.18 6.50 10 8.34 avg 8.13 6.44 std dev 0.30 0.16 0.04

Preliminary experiments: ethyl formate trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 24.53 3.49 0.15 2 9.39 4.59 0.49 3 8.13 6.44 0.79 4 7.45 1.12 5 19.09 3.42 0.18 6 17.89 2.99 0.17 7 17.06 3.13 8 17.02 2.94 9 12.65 3.51 0.28 10 12.25 3.44 11 19.47 2.45 0.13 12 7.66 5.48 0.71 13 4.20 1.08 0.26 14 11.70 3.08 15 11.00 3.34 0.30 16 11.42 3.14 0.27 avg 13.18 3.35 std dev 1.34 0.20 Further Experiments: transition: 202 – 101 Predicted ratio = 2.8

Preliminary experiments: propanal transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 Expt. 1 ratio = 0.036 set carrier frequency to 10000 MHz and 8000 MHz Room Temp (296K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 2.51 0.086 0.034 2 2.63 0.084 0.032 3 2.41 0.090 0.037 4 2.432 0.094 0.039 5 2.386 0.096 0.040 6 2.394 0.092 7 3.981 0.100 0.025 8 3.492 0.029 9 2.372 0.105 0.044 10 2.59 0.112 0.043 avg 2.720 0.036 std dev 0.555 0.009 0.006

Preliminary experiments: propanal transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 (296K) Expt. 1 ratio = 0.036 (296K) Predicted ratio = 0.44 (354K) Expt. 2 ratio = 0.079 (354K) set carrier frequency to 10000 MHz and 8000 MHz Heated nozzle (354K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 2.211 0.1889 0.085 2 2.142 0.1842 0.086 3 2.228 0.1912 4 2.347 0.1965 0.084 5 2.348 0.1758 0.075 6 2.567 0.1789 0.070 7 2.443 0.1968 0.081 8 2.445 0.1911 0.078 9 2.47 0.1779 0.072 10 2.519 0.1897 avg 2.372 0.187 0.079 std dev 0.142 0.008 0.006

Preliminary experiments: propanal transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 (296K) Expt. 1 ratio = 0.036 (296K) Predicted ratio = 0.44 (354K) Expt. 2 ratio = 0.079 (354K) Expt. 3 ratio = 0.077 (296K) set carrier frequency to 10000 MHz and 8000 MHz Room Temp (296K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 1.697 0.1093 0.064 2 1.709 0.1139 0.067 3 1.695 0.1219 0.072 4 1.597 0.1321 0.083 5 1.765 0.1361 0.077 6 1.658 0.1277 7 1.644 0.1268 8 1.71 0.1373 0.080 9 1.72 0.1524 0.089 10 1.618 0.1344 avg 1.681 0.129 std dev 0.051 0.012 0.008

Experimental consistency (?) all experimental parameters same valve timing valve shims backing pressure same tank of chemical/He mix microwave pulse power

Conclusion Future Work It is difficult to reproduce signal intensities with a pulsed jet. We seem to observe conformer relaxation despite using helium as a carrier gas. Future Work Compare relative intensities of conformer spectra, not individual transitions.

Acknowledgements American Chemical Society – Petroleum Research Fund (56530-UR6) SCICU Student-Faculty Research Program Coker College

Preliminary experiments: isopropyl alcohol transition: 101 – 000 each experiment: 10 trials of 100 avgs each set carrier frequency to 13000 MHz – measured both transitions with same measurements Experiment date trans 13254 MHz gauche 13407 MHz ratio (g/t) 3/14 0.64 1.30 2.03 3/15 0.43 1.15 2.67 0.91 1.39 1.53 avg 2.08 std dev 0.57