Using the Concept Lattice for Graphic Understanding

Slides:



Advertisements
Similar presentations
Complexity Metrics for Design & Manufacturability Analysis
Advertisements

Yinyin Yuan and Chang-Tsun Li Computer Science Department
Improving System Safety through Agent-Supported User/System Interfaces: Effects of Operator Behavior Model Charles SANTONI & Jean-Marc MERCANTINI (LSIS)
Employing structural representation for symbol detection, symbol spotting and indexation in line drawing document images Muhammad Muzzamil Luqman
FRE 2645 Graph based Representation 2005 Graphical Knowledge Management in Graphics Recognition Systems Mathieu Delalandre¹, Eric Trupin¹, Jacques Labiche¹,
Fig. 16-CO, p Fig. 16-1, p. 450 Fig. 16-2, p. 450.
Automatic Acquisition of Fuzzy Footprints Steven Schockaert, Martine De Cock, Etienne E. Kerre.
Pilar Muñoz, José-Antonio González, Erik Cobo, Lluis Jover JORNADES D’INNOVACIÓ DOCENT A LA UPC: Presentació de resultats dels projectes MQD ICE 28/06/07.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Is Sampling Useful in Data Mining? A Case in the Maintenance of Discovered Association Rules S.D. Lee, D. W. Cheung, B. Kao Department of Computer Science.
Geometrically overlaying di ff erent representations of an object in a scene By: Senate Taka CS 104 Final Project.
FRE 2645 Grec 2003 : 30 July, 2003 Adaptable Vectorisation System Based on Strategic Knowledge and XML Representation Use Delalandre Mathieu¹, Saidali.
Gilet, Diard, Palluel-Germain & Bessière — LIG & LPNC-CNRS Bayesian Action-Perception model Bayesian Action-Perception loop modeling: Application to trajectory.
Hubert CARDOTJY- RAMELRashid-Jalal QURESHI Université François Rabelais de Tours, Laboratoire d'Informatique 64, Avenue Jean Portalis, TOURS – France.
Kansas State University Department of Computing and Information Sciences CIS 830: Advanced Topics in Artificial Intelligence From Data Mining To Knowledge.
Exploring the Effect of Graphical Metaphors on the Performance of Learning Computer Programming Concepts in Adult Learners: a pilot study 指導教授 : 陳明溥 博士.
FRE 2645 Graph based Representation 2005 Graphical Knowledge Management in Graphics Recognition Systems Mathieu Delalandre¹, Eric Trupin¹, Jacques Labiche¹,
Sum-Product Networks CS886 Topics in Natural Language Processing
Interactively Modeling with Photogrammetry Pierre Poulin Mathieu Ouimet Marie-Claude Frasson Dép. Informatique et recherche opérationnelle Université de.
Knowledge Representation of Statistic Domain For CBR Application Supervisor : Dr. Aslina Saad Dr. Mashitoh Hashim PM Dr. Nor Hasbiah Ubaidullah.
A Two-level Pose Estimation Framework Using Majority Voting of Gabor Wavelets and Bunch Graph Analysis J. Wu, J. M. Pedersen, D. Putthividhya, D. Norgaard,
Experimental evaluation of two haptic techniques for 3D interaction: constriction polyhedron / magnetic attraction Antonio CAPOBIANCO Caroline ESSERT-VILLARD.
Second International Conference on Multimedia and ICTs in Education MICTE 2003 – Badajoz - Spain A KNOWLEDGE ONTOLOGY AND ITS APPLICATION INTO A LEARNING.
Foundations of Sociological Inquiry Statistical Analysis.
CS532 TERM PAPER MEASUREMENT IN SOFTWARE ENGINEERING NAVEEN KUMAR SOMA.
Open The Box of Science Review on Test of Scientific Literacy Skills-1 Robert, Hao Chen
OECD Guidelines on Measuring Subjective Well-being
Groupe de Recherche en Informatique Université du Québec à Chicoutimi A Logical Approach to ADL Recognition for Alzheimer’s patients ICOST 2006 Bruno Bouchard,
Chapter 16 Social Statistics. Chapter Outline The Origins of the Elaboration Model The Elaboration Paradigm Elaboration and Ex Post Facto Hypothesizing.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Math 145 January 29, Outline 1. Recap 2. Sampling Designs 3. Graphical methods.
FRE 2645 ICISP’2003 : Agadir, Morocco : 24 June, 2003 Symbol Recognition by Global Local Structural Approaches, Based on Scenario Use, and with a XML Representation.
FRE 2645 ELCVIA Contextual System of Symbol Structural Recognition based on an Object-Process Methodology Mathieu Delalandre¹, Eric Trupin¹, Jean-Marc.
Melody Recognition with Learned Edit Distances Amaury Habrard Laboratoire d’Informatique Fondamentale CNRS Université Aix-Marseille José Manuel Iñesta,
Chapter 1 Introduction 1-1. Learning Objectives  To learn the basic definitions used in statistics and some of its key concepts.  To obtain an overview.
Computer Vision COURSE OBJECTIVES: To introduce the student to computer vision algorithms, methods and concepts. EXPECTED OUTCOME: Get introduced to computer.
Journée Doctorants & Co
MRFs (X1,X2) X3 X1 X2 4 (X2,X3,X3) X4. MRFs (X1,X2) X3 X1 X2 4 (X2,X3,X3) X4.
Engineering Probability and Statistics - SE-205 -Chap 1
Nonlinear Dimensionality Reduction
Math 145 May 27, 2009.
Document Analysis Group
Lecture 21: GIS Analytical Functionality (V)
Introduction to Statistics
Math 145 June 25, 2013.
Chapter 2 Simple Comparative Experiments
Sahar Cherif, Nesrine Baklouti , Adel Alimi and Vaclav Snasel
Task-based assessment of students’ computational thinking skills developed through visual programming or tangible coding environments Takam Djambong.
Interactions.
The Nature of Probability and Statistics
מיחזור במערכת החינוך.
A Unifying View on Instance Selection
POSTER EXAMPLE TITLE FOR ISBS2018 Auckland
Table Normal Forms.
Estimation of R(t). Estimation of R(t). (A) Daily R(t) as inferred from the daily incidence of new infections for one stochastic model realization. Tg.
Proposed reaction sequence initiating HMBPP reduction as it was derived from crystallographic data. Proposed reaction sequence initiating HMBPP reduction.
Chapter 10 Inferences on Two Samples
Math 145.
STAT 145.
Math 145 January 28, 2015.
Stat 223 Introduction to the Theory of Statistics
George Bebis and Wenjing Li Computer Vision Laboratory
Mathieu Delalandre¹, Eric Trupin¹, Jean-Marc Ogier², Jacques Labiche¹
Learning Object Context for Dense Captioning
STAT 245.
Representation Probabilistic Graphical Models Local Structure Overview.
Table 1. Descriptive statistics
Math 145 September 3, 2008.
Math 145 May 23, 2016.
Mathieu Delalandre, Pierre Héroux, Sébastien Adam, Eric Trupin,
Presentation transcript:

Using the Concept Lattice for Graphic Understanding Laboratoire d ’Informatique et d ’Imagerie Industrielle Département Informatique - Pôle Sciences et Technologies - Université de La Rochelle Using the Concept Lattice for Graphic Understanding M. Al-hajj, K. Bertet, J. Gay, J-M. Ogier L3I - University of La Rochelle - France Université de la Rochelle

Description of the problem Knowledge representation: Prototypes basis Concept lattice Noisy object recognition: Noisy object one prototype concept lattice Université de la Rochelle

Concept lattice: Example G (prototypes) Concept: (12,abd) (123,bd) (12,abd) C (123,bd) M (attributes) Université de la Rochelle

Concept lattice: Example Context Université de la Rochelle

Meaning of a concept (A,B) Prototypes A Attributes B Concept (A,B) validated attributes B’:  (A,B): smallest concept containing B ’  B \ B’: inferred attributes  A: candidates prototypes Université de la Rochelle

Relation between two concepts Reduction: validated attributes  candidates prototypes  Validation: validated attributes candidates prototypes (A1,B1) (A,B) A  A1 et B  B1 Université de la Rochelle

Recognition steps (A’,B’ ) Final step: one candidate prototype Basic step: (un)validated attributes inferred attributes (A1,B1 ) (A,B ) Initial step: no validated attributes G candidate prototypes (G,) Université de la Rochelle

4 basic steps In: (A,B)  Out: (A1,B1) Global validation : (A1,B1) > (A,B) Local validation : (A1,B1)  (A,B) Global reduction : (A1,B1) < (A,B) Local reduction : (A1,B1)  (A,B)

Graphic recognition 1- Knowledge representation by a concept lattice from a context 2- Noisy object recogntion by a sequence of validation/reduction steps through the lattice Which context ? Which steps ? How to select attributes ? Université de la Rochelle

Fourrier-Melin Transform, Image analysis Two different image analysis techniques : statistical analysis: image x  signature (x1,…, xm) structural analysis Zernique moments, Fourrier-Melin Transform, …….. Université de la Rochelle

Knowledge representation Set of prototypes signatures Sampling of the values in disjoint intervals Context Concept lattice co-atomistique

Attributes selection function  Iik (xi ) = membership degree of xi to Iik Selection function (bound): to validate the interval Iik when  Iik (xi ) > bound  Iik (xi ) Iik bound xi L3I - Pôle Sciences et Technologies - Université de La Rochelle

Graphic recogntion In: a signature (x1,…, xm) (A,B) = ( ,M) seuil = 100 while |A|>2 (A,B) = global validation ((A,B)) seuil = seuil - 10 if |A| = 0 (A,B) = local reduction ((A,B)) Out: A={a}

Conclusion Experimental study with the statistic descriptors in progress Strutural approach to study Agorithmical study: on-line generation of the basic steps through the lattice without generating the whole lattice (exponential)  using an implicationnal system